'Bridge' effect of CdS nanoparticles in the interface of graphene-polyaniline composites

被引:32
作者
Huang, Yunyun [1 ,3 ]
Chen, Yujie [2 ,3 ]
Hu, Chenglong [1 ,3 ]
Zhang, Bin [1 ,3 ]
Shen, Ting [1 ,3 ]
Chen, Xudong [1 ,3 ]
Zhang, Ming Qiu [1 ,3 ]
机构
[1] Sun Yat Sen Univ, Key Lab Polym Compos & Funct Mat, Key Lab Designed Synth & Appl Polym Mat, Sch Chem & Chem Engn, Guangzhou 510275, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Phys & Engn, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
[3] Univ Strathclyde, Inst Photon, SUPA, Glasgow G4 0NW, Lanark, Scotland
关键词
EXFOLIATED GRAPHITE OXIDE; FILMS; SUPERCAPACITORS; POLYMERIZATION; SPECTROSCOPY; ELECTRODE;
D O I
10.1039/c2jm31410j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A facile method for preparing graphene-polyaniline composite is proposed without the necessity of using graphene oxide. By adding CdS nanoparticles into the in situ polymerization system consisting of graphene and aniline monomers, a graphene-polyaniline composite with a well-bonded interface is yielded. It is found that the nano-CdS particles act as a 'bridge', connecting (i) PANI via the electrostatic force of attraction between the electron clouds of the sulfur and nitrogen atoms and (ii) graphene by p-p stacking. Taking advantage of the effective interfacial interactions, a large enhancement (similar to 400%) of the photoelectronic performance in the composite is observed. The work opens up a path for maintaining the original structure and properties of graphene during graphene-polymer composite manufacturing.
引用
收藏
页码:10999 / 11002
页数:4
相关论文
共 32 条
[1]   A Facile One-step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials [J].
Cao, Aoneng ;
Liu, Zhen ;
Chu, Saisai ;
Wu, Minghong ;
Ye, Zhangmei ;
Cai, Zhengwei ;
Chang, Yanli ;
Wang, Shufeng ;
Gong, Qihuang ;
Liu, Yuanfang .
ADVANCED MATERIALS, 2010, 22 (01) :103-+
[2]   Synthesis of a new polyaniline/nanotube composite:: "in-situ" polymerisation and charge transfer through site-selective interaction [J].
Cochet, M ;
Maser, WK ;
Benito, AM ;
Callejas, MA ;
Martínez, MT ;
Benoit, JM ;
Schreiber, J ;
Chauvet, O .
CHEMICAL COMMUNICATIONS, 2001, (16) :1450-1451
[3]   Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization [J].
Domingues, Sergio H. ;
Salvatierra, Rodrigo V. ;
Oliveirab, Marcela M. ;
Zarbin, Aldo J. G. .
CHEMICAL COMMUNICATIONS, 2011, 47 (09) :2592-2594
[4]  
DONG YH, 1991, ELECTROCHIM ACTA, V36, P2015
[5]   Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation [J].
Fan, Xiaobin ;
Peng, Wenchao ;
Li, Yang ;
Li, Xianyu ;
Wang, Shulan ;
Zhang, Guoliang ;
Zhang, Fengbao .
ADVANCED MATERIALS, 2008, 20 (23) :4490-4493
[6]   Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization [J].
Feng, W ;
Bai, XD ;
Lian, YQ ;
Liang, J ;
Wang, XG ;
Yoshino, K .
CARBON, 2003, 41 (08) :1551-1557
[7]   Synthesis of crystalline mesoporous CdS semiconductor nanoarrays through a mesoporous SBA-15 silica template technique [J].
Gao, F ;
Lu, QY ;
Zhao, DY .
ADVANCED MATERIALS, 2003, 15 (09) :739-742
[8]   Graphene as a subnanometre trans-electrode membrane [J].
Garaj, S. ;
Hubbard, W. ;
Reina, A. ;
Kong, J. ;
Branton, D. ;
Golovchenko, J. A. .
NATURE, 2010, 467 (7312) :190-U73
[9]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[10]   Graphene Based Materials: Enhancing Solar Energy Harvesting [J].
Guo, Chun Xian ;
Guai, Guan Hong ;
Li, Chang Ming .
ADVANCED ENERGY MATERIALS, 2011, 1 (03) :448-452