Recent Advances in Thermal Interface Materials for Thermal Management of High-Power Electronics

被引:75
作者
Xing, Wenkui [1 ,2 ,3 ]
Xu, Yue [1 ,2 ,3 ]
Song, Chengyi [1 ,2 ,3 ]
Deng, Tao [1 ,2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, 800 Dong Chuan Rd, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Key Lab Hydrogen Sci, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Ctr Hydrogen Sci, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
thermal interface materials; thermal conductivity; high-power electronics; interfacial thermal resistance; thermal management; 3-DIMENSIONAL NETWORKS; CONTACT RESISTANCE; MATRIX COMPOSITES; CONDUCTIVITY; LIQUID; METAL; GRAPHENE; TEMPERATURE; TRANSPORT; MODEL;
D O I
10.3390/nano12193365
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the increased level of integration and miniaturization of modern electronics, high-power density electronics require efficient heat dissipation per unit area. To improve the heat dissipation capability of high-power electronic systems, advanced thermal interface materials (TIMs) with high thermal conductivity and low interfacial thermal resistance are urgently needed in the structural design of advanced electronics. Metal-, carbon- and polymer-based TIMs can reach high thermal conductivity and are promising for heat dissipation in high-power electronics. This review article introduces the heat dissipation models, classification, performances and fabrication methods of advanced TIMs, and provides a summary of the recent research status and developing trends of micro- and nanoscale TIMs used for heat dissipation in high-power electronics.
引用
收藏
页数:22
相关论文
共 112 条
[1]   ESTIMATION ON THERMAL-CONDUCTIVITIES OF FILLED POLYMERS [J].
AGARI, Y ;
UNO, T .
JOURNAL OF APPLIED POLYMER SCIENCE, 1986, 32 (07) :5705-5712
[2]   A polymer-based thermal management material with enhanced thermal conductivity by introducing three-dimensional networks and covalent bond connections [J].
An, Dong ;
Cheng, Shuaishuai ;
Zhang, Zhiyi ;
Jiang, Can ;
Fang, Haoming ;
Li, Jiaxiong ;
Liu, Yaqing ;
Wong, Ching-Ping .
CARBON, 2019, 155 :258-267
[3]   Study on thermal performance of high power LED employing aluminum filled epoxy composite as thermal interface material [J].
Anithambigai, P. ;
Shanmugan, S. ;
Mutharasu, D. ;
Zahner, T. ;
Lacey, D. .
MICROELECTRONICS JOURNAL, 2014, 45 (12) :1726-1733
[4]   Heat transfer at nanoscale contacts investigated with scanning thermal microscopy [J].
Assy, Ali ;
Gomes, Severine .
APPLIED PHYSICS LETTERS, 2015, 107 (04)
[5]   Interfacial heat transport across multilayer nanofilms in ballistic-diffusive regime [J].
Belmabrouk, Hafedh ;
Rezgui, Houssem ;
Nasri, Faouzi ;
Ben Aissa, Mohamed Fadhel ;
Guizani, Amen Allah .
EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (01)
[6]   Advanced thermal management technologies for defense electronics [J].
Bloschock, Kristen P. ;
Bar-Cohen, Avram .
DEFENSE TRANSFORMATION AND NET-CENTRIC SYSTEMS 2012, 2012, 8405
[7]   Diamond Surface Modification to Enhance Interfacial Thermal Conductivity in Al/Diamond Composites [J].
Caccia, Mario ;
Rodriguez, Alejandro ;
Narciso, Javier .
JOM, 2014, 66 (06) :920-925
[8]   Natural Graphite Sheet Heat Sinks With Embedded Heat Pipes [J].
Cermak, Martin ;
Faure, Xavier ;
Saket, Mohammad Ali ;
Bahrami, Majid ;
Ordonez, Martin .
IEEE ACCESS, 2020, 8 :80827-80835
[9]   A reduced percolation threshold of hybrid fillers of ball-milled exfoliated graphite nanoplatelets and AgNWs for enhanced thermal interface materials in high power electronics [J].
Chang, Tien-Chan ;
Kwan, Yee-Kwan ;
Fuh, Yiin-Kuen .
COMPOSITES PART B-ENGINEERING, 2020, 191
[10]   Architecting Three-Dimensional Networks in Carbon Nanotube Buckypapers for Thermal Interface Materials [J].
Chen, Hongyuan ;
Chen, Minghai ;
Di, Jiangtao ;
Xu, Geng ;
Li, Hongbo ;
Li, Qingwen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (06) :3903-3909