Asymptotic behavior of Ext for pairs of modules of large complexity over graded complete intersections
被引:0
|
作者:
Jorgensen, David A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Arlington, Dept Math, 411 S Nedderman Dr,Pickard Hall 429, Arlington, TX 76019 USAUniv Texas Arlington, Dept Math, 411 S Nedderman Dr,Pickard Hall 429, Arlington, TX 76019 USA
Jorgensen, David A.
[1
]
Sega, Liana M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Missouri Kansas City, Div Comp Analyt & Math, 206 Haag Hall,5100 Rockhill Rd, Kansas City, MO 64110 USAUniv Texas Arlington, Dept Math, 411 S Nedderman Dr,Pickard Hall 429, Arlington, TX 76019 USA
Sega, Liana M.
[2
]
Thompson, Peder
论文数: 0引用数: 0
h-index: 0
机构:
NTNU, Inst matemat Fag, N-7491 Trondheim, Norway
Niagara Univ, Dept Math, Niagara, NY 14109 USAUniv Texas Arlington, Dept Math, 411 S Nedderman Dr,Pickard Hall 429, Arlington, TX 76019 USA
Thompson, Peder
[3
,4
]
机构:
[1] Univ Texas Arlington, Dept Math, 411 S Nedderman Dr,Pickard Hall 429, Arlington, TX 76019 USA
[2] Univ Missouri Kansas City, Div Comp Analyt & Math, 206 Haag Hall,5100 Rockhill Rd, Kansas City, MO 64110 USA
Let M and N be finitely generated graded modules over a graded complete intersection R such that Ext(R)(i) R (M,N) has finite length for all i >> 0. We show that the even and odd Hilbert polynomials, which give the lengths of Ext(R)(i) (M, N) for all large even i and all large odd i, have the same degree and leading coefficient whenever the highest degree of these polynomials is at least the dimension of M or N. Refinements of this result are given when R is regular in small codimensions.