The Ramsey Numbers of Trees Versus Generalized 6-Wheels or Generalized 7-Wheels

被引:0
作者
Wang, Longqin [1 ,2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221009, Jiangsu, Peoples R China
关键词
Ramsey number; Tree; Star; Generalized wheel; PATHS;
D O I
10.1007/s00373-022-02533-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For two given graphs G(1) and G(2), the Ramsey number R(G(1), G(2)) is the smallest integer n such that for any graph G of order n, either G contains G(1) or (G) over bar contains G(2). Let T-n denote a tree of order n, and a generalized wheel K-s + C-m is the graph obtained by joining each vertex of & to each vertex of C-m. In this paper, we show that: R(T-n, K-s + C-6) = (s + 1)(n - 1) + 1 for s >= 2 and n >= 5, and R(T-n, K-s + C-7) = (s + 2)(n - 1) + 1 for s >= 1 and n >= 5.
引用
收藏
页数:9
相关论文
共 17 条
[1]   On Ramsey numbers for trees versus wheels of five or six vertices [J].
Baskoro, ET ;
Surahmat ;
Nababan, SM ;
Miller, M .
GRAPHS AND COMBINATORICS, 2002, 18 (04) :717-721
[2]  
Baskoro S.E.T., 2001, P 12 AUSTRALASIAN WO, P174
[3]  
Bondy J. A., 1971, J COMB THEORY B, V11, P80
[4]  
BURR SA, 1981, J LOND MATH SOC, V24, P405
[5]   The Ramsey numbers of trees versus W6 or W7 [J].
Chen, YJ ;
Zhang, YQ ;
Zhang, KM .
EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (04) :558-564
[6]   The Ramsey numbers of paths versus wheels [J].
Chen, YJ ;
Zhang, YQ ;
Zhang, KM .
DISCRETE MATHEMATICS, 2005, 290 (01) :85-87
[7]   The Ramsey numbers of stars versus wheels [J].
Chen, YJ ;
Zhang, YQ ;
Zhang, KM .
EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (07) :1067-1075
[8]  
Dirac G. A., 1952, Proceedings of the London Mathematical Society, V3, P69, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
[9]   Turan numbers for odd wheels [J].
Dzido, Tomasz ;
Jastrzebski, Andrzej .
DISCRETE MATHEMATICS, 2018, 341 (04) :1150-1154
[10]  
Hasmawati, 2005, Journal of Combinatorial Mathematics and Combinatorial Computing, V55, P123