Lubrication Force Saturation Matters for the Critical Separation Size of the Non-Colloidal Spherical Particle in the Deterministic Lateral Displacement Device

被引:2
作者
Yu, Zhaosheng [1 ]
Yang, Yutian [1 ]
Lin, Jianzhong [1 ]
机构
[1] Zhejiang Univ, State Key Lab Fluid Power & Mechatron Syst, Dept Mech, Hangzhou 310027, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 05期
基金
中国国家自然科学基金;
关键词
deterministic lateral displacement; fictitious domain method; lubrication force saturation; spherical particle; FICTITIOUS DOMAIN METHOD; SEDIMENTATION; SIMULATION; CELLS; FLOW;
D O I
10.3390/app12052733
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Deterministic lateral displacement (DLD) is a popular technique for separating micro-scale and nano-scale particles continuously. In this paper, an efficient three-dimensional fictitious domain method is developed for the direct numerical simulation of the motion of a non-colloidal spherical particle in the DLD device (i.e., cylinder array), based on substantial modification of our previous FD method. A combination of the fast Fourier transformation (FFT) and a tri-diagonal solver is developed to efficiently solve the pressure Poisson equation for a DLD unit with a shifted periodic boundary condition in the streamwise direction. The lubrication force correction is adopted in the fictitious domain method to correct the unresolved hydrodynamic force when the particle is close to the cylinder with the gap distance below one mesh, and the lubrication force is assumed to saturate at a smaller critical gap distance as a result of the surface roughness effect. The proposed method is then employed to investigate the effect of the critical gap distance of the lubrication force saturation on the motion mode (i.e., separation size) of the particle in the DLD device. Our results indicate that the lubrication force saturation is important to the particle critical separation size, and a smaller saturation distance generally makes the particle more prone to the zigzag mode.
引用
收藏
页数:12
相关论文
共 38 条
[1]   Effect of angle-of-attacks on deterministic lateral displacement (DLD) with symmetric airfoil pillars [J].
Ahasan, Kawkab ;
Landry, Christopher M. ;
Chen, Xiaolin ;
Kim, Jong-Hoon .
BIOMEDICAL MICRODEVICES, 2020, 22 (02)
[2]   New design for the separation of microorganisms using microfluidic deterministic lateral displacement [J].
Al-Fandi, Mohamed ;
Al-Rousan, Mohammad ;
Jaradat, Mohammad A. K. ;
Al-Ebbini, Lina .
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2011, 27 (02) :237-244
[3]   Sorting cells by size, shape and deformability [J].
Beech, Jason P. ;
Holm, Stefan H. ;
Adolfsson, Karl ;
Tegenfeldt, Jonas O. .
LAB ON A CHIP, 2012, 12 (06) :1048-1051
[4]   Non-Newtonian deterministic lateral displacement separator: theory and simulations [J].
D'Avino, Gaetano .
RHEOLOGICA ACTA, 2013, 52 (03) :221-236
[5]   Deterministic hydrodynamics: Taking blood apart [J].
Davis, John A. ;
Inglis, David W. ;
Morton, Keith J. ;
Lawrence, David A. ;
Huang, Lotien R. ;
Chou, Stephen Y. ;
Sturm, James C. ;
Austin, Robert H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (40) :14779-14784
[6]   Deterministic lateral displacement (DLD) in the high Reynolds number regime: high-throughput and dynamic separation characteristics [J].
Dincau, Brian M. ;
Aghilinejad, Arian ;
Hammersley, Taylor ;
Chen, Xiaolin ;
Kim, Jong-Hoon .
MICROFLUIDICS AND NANOFLUIDICS, 2018, 22 (06)
[7]  
Douglas J., 1964, NUMER MATH, V6, P428, DOI [10.1007/BF01386093, DOI 10.1007/BF01386093]
[8]   A distributed Lagrange multiplier fictitious domain method for particulate flows [J].
Glowinski, R ;
Pan, TW ;
Hesla, TI ;
Joseph, DD .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1999, 25 (05) :755-794
[9]   Sorting cells by their dynamical properties [J].
Henry, Ewan ;
Holm, Stefan H. ;
Zhang, Zunmin ;
Beech, Jason P. ;
Tegenfeldt, Jonas O. ;
Fedosov, Dmitry A. ;
Gompper, Gerhard .
SCIENTIFIC REPORTS, 2016, 6
[10]   Deterministic Lateral Displacement: Challenges and Perspectives [J].
Hochstetter, Axel ;
Vernekar, Rohan ;
Austin, Robert H. ;
Becker, Holger ;
Beech, Jason P. ;
Fedosov, Dmitry A. ;
Gompper, Gerhard ;
Kim, Sung-Cheol ;
Smith, Joshua T. ;
Stolovitzky, Gustavo ;
Tegenfeldt, Jonas O. ;
Wunsch, Benjamin H. ;
Zeming, Kerwin K. ;
Kruger, Timm ;
Inglis, David W. .
ACS NANO, 2020, 14 (09) :10784-10795