Quantum-classical correspondence for the kinetic energy

被引:0
作者
Hamilton, I. P. [1 ]
Mosna, Ricardo A. [2 ]
Delle Site, L. [3 ]
机构
[1] Wilfrid Laurier Univ, Dept Chem, Waterloo, ON N2L 3C5, Canada
[2] Univ Estadual Campinas, Inst Matemat Estatist & Computacao Cientif, BR-13081970 Campinas, SP, Brazil
[3] Max Planck Inst Polymer Res, D-55021 Mainz, Germany
来源
RECENT PROGRESS IN COMPUTATIONAL SCIENCES AND ENGINEERING, VOLS 7A AND 7B | 2006年 / 7A-B卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present and update a recently developed approach [1, 2] to the quantum-classical correspondence whereby the quantum kinetic energy can be decomposed as the sum of a classical-like kinetic energy and a purely quantum term (arising from the fluctuations that turn classical mechanics into quantum mechanics). We consider the relevance of this decomposition to the construction of kinetic-energy functionals.
引用
收藏
页码:1031 / +
页数:2
相关论文
共 7 条
[1]   Theory of statistical estimation. [J].
Fisher, RA .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1925, 22 :700-725
[2]   Variational approach to dequantization [J].
Mosna, RA ;
Hamilton, IP ;
Delle Site, L .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (14) :L229-L235
[3]   Quantum-classical correspondence via a deformed kinetic operator [J].
Mosna, RA ;
Hamilton, IP ;
Delle Site, L .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (17) :3869-3878
[4]   DERIVATION OF SCHRODINGER EQUATION FROM NEWTONIAN MECHANICS [J].
NELSON, E .
PHYSICAL REVIEW, 1966, 150 (04) :1079-&
[5]  
Nelson E., 1967, DYNAMICAL THEORIES B
[6]  
Weizacker C. F., 1935, Z PHYS, V96, P431, DOI DOI 10.1007/BF01337700
[7]  
WITTEN E, 1982, J DIFFER GEOM, V17, P661, DOI 10.4310/jdg/1214437492