Design and Analysis of a New Load less 4T SRAM Cell in Deep Submicron CMOS Technologies

被引:0
|
作者
Sandeep, R. [1 ]
Deshpande, Narayan T. [1 ]
Aswatha, A. R. [2 ]
机构
[1] BMSCE, Dept ECE, Bangalore 560019, Karnataka, India
[2] DSCE, Dept ECE, Bangalore 560078, Karnataka, India
关键词
6T SRAM cell; new loadless 4T SRAM cell; SNM; low power; low area;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The goal of this paper is to reduce the power and area of the Static Random Access Memory (SRAM) array while maintaining the competitive performance. Here the various configuration of SRAM array is designed using both the six-transistor (6T) SRAM cell and a new loadless four-transistor (4T) SRAM cell in deep sublnicron (130nm, 90nm and 65nm) CMOS technologies. Then it is simulated using HSPICE to check for its functionality, Static Noise Margin (SNM), power dissipation, area occupancy and access time. Except the precharge circuits and the basic storage cells, remaining part of the circuitry is same for both 6T SRAM array and New Loadless 9T SRAM array. Compared to the conventional 6T SRAM array, the new loadless 41 SRAM array consumes less power with less area in deep submicron CMOS technologies. Also the SNM of the new loadless 4T SRAM cell is as good as that of the 6T SRAM cell for higher values of Cell Ratio (CR).
引用
收藏
页码:666 / +
页数:2
相关论文
共 50 条
  • [21] High voltage tolerant ESD design for analog applications in deep submicron CMOS technologies
    Chen, CH
    Fang, YK
    Tsai, CC
    Tu, S
    Chen, MKL
    Chang, MC
    PROCEEDINGS OF THE IEEE 2002 CUSTOM INTEGRATED CIRCUITS CONFERENCE, 2002, : 89 - 92
  • [22] Design and analysis of CMOS based 6T SRAM cell at different technology nodes
    Devi, Meenakshi
    Madhu, Charu
    Garg, Nidhi
    MATERIALS TODAY-PROCEEDINGS, 2020, 28 : 1695 - 1700
  • [23] 3D CMOS integration: Introduction of dynamic coupling and application to compact and robust 4T SRAM
    Batude, P.
    Jaud, M. -A.
    Thomas, O.
    Clavelier, L.
    Pouydebasque, A.
    Vinet, M.
    Deleonibus, S.
    Amara, A.
    2008 IEEE INTERNATIONAL CONFERENCE ON INTEGRATED CIRCUIT DESIGN AND TECHNOLOGY, PROCEEDINGS, 2008, : 281 - +
  • [24] A Subthreshold Single Ended I/O SRAM Cell Design for Nanometer CMOS Technologies
    Singh, Jawar
    Mathew, Jimson
    Pradhan, Dhiraj K.
    Mohanty, Saraju P.
    IEEE INTERNATIONAL SOC CONFERENCE, PROCEEDINGS, 2008, : 243 - +
  • [25] Analysis of width edge effects in advanced isolation schemes for deep submicron CMOS technologies
    Sallagoity, P
    AdaHanifi, M
    Paoli, M
    Haond, M
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1996, 43 (11) : 1900 - 1906
  • [26] Channel length as a design parameter for low noise wideband LNAs in deep submicron CMOS technologies
    Andersson, S
    Svensson, C
    22ND NORCHIP CONFERENCE, PROCEEDINGS, 2004, : 123 - 126
  • [27] Research of SBB Effect on SOI-MOSFET Low Power 4T SRAM Cell
    Ma, Zhuang
    Yu, Sichen
    Shao, Zhibiao
    2009 IEEE INTERNATIONAL CONFERENCE OF ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC 2009), 2009, : 453 - 456
  • [28] Design and Characterization of Radiation-Tolerant CMOS 4T Active Pixel Sensors
    Qian, Xinyuan
    Yu, Hang
    Chen, Shoushun
    Low, Kay Soon
    2014 14TH INTERNATIONAL SYMPOSIUM ON INTEGRATED CIRCUITS (ISIC), 2014, : 520 - 523
  • [29] Analysis of Power in 3T DRAM and 4T DRAM Cell design For Different Technology
    Akashe, Shyam
    Mudgal, Ambrish
    Singh, Shyam Babu
    PROCEEDINGS OF THE 2012 WORLD CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGIES, 2012, : 18 - 21
  • [30] CMOS 6-T SRAM cell design subject to ''atomistic" fluctuations
    Cheng, B.
    Roy, S.
    Asenov, A.
    SOLID-STATE ELECTRONICS, 2007, 51 (04) : 565 - 571