Holomorphic Curves into Algebraic Varieties Intersecting Moving Hypersurface Targets

被引:9
作者
Dethloff, Gerd [1 ]
Tan, Tran Van [2 ]
机构
[1] Univ Bretagne Occidentale Brest, Lab Math Bretagne Atlantique, UMR 6205, 6 Ave Le Gorgeu,CS 93837, F-29238 Brest 3, France
[2] Hanoi Natl Univ Educ, Dept Math, 136 Xuan Thuy St, Hanoi, Vietnam
关键词
Nevanlinna theory; Vojta's dictionary; Diophantine approximation; SCHMIDTS SUBSPACE THEOREM; 2ND MAIN THEOREM; POLYNOMIALS;
D O I
10.1007/s40306-019-00336-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Ru (Ann. Math. 169, 255-267 2009), Min Ru proved a second main theorem for algebraically nondegenerate holomorphic curves in complex projective varieties intersecting fixed hypersurface targets. In this paper, by introducing a new proof method for the case of projective varieties, we generalize this result to moving hypersurface targets.
引用
收藏
页码:291 / 308
页数:18
相关论文
共 19 条
[1]  
[Anonymous], 1977, ALGEBRAIC GEOM
[2]   Schmidt's Subspace Theorem with Moving Hypersurfaces [J].
Chen, Zhihua ;
Ru, Min ;
Yan, Qiming .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (15) :6305-6329
[3]   The degenerated second main theorem and Schmidt's subspace theorem [J].
Chen ZhiHua ;
Ru Min ;
Yan QiMing .
SCIENCE CHINA-MATHEMATICS, 2012, 55 (07) :1367-1380
[4]   The truncated Second Main Theorem and uniqueness theorems [J].
Chen ZhiHua ;
Ru Min ;
Yan QiMing .
SCIENCE CHINA-MATHEMATICS, 2010, 53 (03) :605-616
[5]   On a general Thue's equation [J].
Corvaja, P ;
Zannier, U .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (05) :1033-1055
[6]  
Dethloff G, 2011, HOUSTON J MATH, V37, P79
[7]   A generalization of the Subspace Theorem with polynomials of higher degree [J].
Evertse, Jan-Hendrik ;
Ferretti, Roberto G. .
DIOPHANTINE APPROXIMATION: FESTSCHRIFT FOR WOLFGANG SCHMIDT, 2008, 16 :175-+
[8]  
Evertse JH, 2002, INT MATH RES NOTICES, V2002, P1295
[9]   Holomorphic curves into algebraic varieties intersecting divisors in subgeneral position [J].
Ji, Qingchun ;
Yan, Qiming ;
Yu, Guangsheng .
MATHEMATISCHE ANNALEN, 2019, 373 (3-4) :1457-1483
[10]   Schmidt's subspace theorem for moving hypersurface targets [J].
Le, Giang .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (01) :139-158