A class of fourth order wave equations with dissipative and nonlinear strain terms

被引:54
作者
Liu Yacheng [1 ]
Xu Runzhang [1 ,2 ]
机构
[1] Harbin Engn Univ, Coll Sci, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Coll Automat, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
fourth order wave equations; dissipative; potential wells; global existence; nonexistence;
D O I
10.1016/j.jde.2007.10.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the initial boundary value problem for a class of fourth order wave equations with dissipative and nonlinear strain terms. By introducing a family of potential wells we not only obtain the invariant sets and vacuum isolating of solutions, but also give some threshold results of global existence and nonexistence of solutions. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:200 / 228
页数:29
相关论文
共 34 条
[1]  
Adams R., 1975, Sobolev Spaces
[2]   A WEAKLY NONLINEAR-ANALYSIS OF ELASTO-PLASTIC-MICROSTRUCTURE MODELS [J].
AN, LJ ;
PEIRCE, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (01) :136-155
[3]   Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction [J].
Cavalcanti, Marcelo M. ;
Cavalcanti, Valeria N. Domingos ;
Lasiecka, Irena .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 236 (02) :407-459
[4]   Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term [J].
Cavalcanti, MM ;
Cavalcanti, VND ;
Martinez, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 203 (01) :119-158
[5]   Existence and asymptotic stability for evolution problems on manifolds with damping and source terms [J].
Cavalcanti, MM ;
Cavalcanti, VND .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 291 (01) :109-127
[6]  
Chen GW, 2000, MATH METHOD APPL SCI, V23, P615, DOI 10.1002/(SICI)1099-1476(20000510)23:7<615::AID-MMA133>3.0.CO
[7]  
2-E
[8]   EXISTENCE OF GLOBAL CLASSICAL SOLUTION OF INITIAL-BOUNDARY VALUE-PROBLEM FOR CLASSU-U3=F [J].
EBIHARA, Y ;
NAKAO, M ;
NANBU, T .
PACIFIC JOURNAL OF MATHEMATICS, 1975, 60 (02) :63-70
[9]   Qualitative analysis of a nonlinear wave equation [J].
Esquivel-Avila, JA .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2004, 10 (03) :787-804
[10]   The dynamics of a nonlinear wave equation [J].
Esquivel-Avila, JA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (01) :135-150