Improved pathogenicity prediction for rare human missense variants

被引:65
|
作者
Wu, Yingzhou [1 ,2 ,3 ,4 ]
Li, Roujia [1 ,2 ,3 ,4 ]
Sun, Song [1 ,2 ,3 ,4 ]
Weile, Jochen [1 ,2 ,3 ,4 ]
Roth, Frederick P. [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Toronto, Donnelly Ctr, Toronto, ON M5S 3E1, Canada
[2] Univ Toronto, Dept Mol Genet, Toronto, ON M5S 3E1, Canada
[3] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 2E4, Canada
[4] Sinai Hlth, Lunenfeld Tanenbaum Res Inst, Toronto, ON M5G 1X5, Canada
[5] Dana Farber Canc Inst, Ctr Canc Syst Biol, Boston, MA 02215 USA
[6] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada
基金
加拿大健康研究院;
关键词
FUNCTIONAL ASSAYS; MUTATION; IMPACT; CONSEQUENCES; ANNOTATIONS; ELEMENTS; DATABASE;
D O I
10.1016/j.ajhg.2021.08.012
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The success of personalized genomic medicine depends on our ability to assess the pathogenicity of rare human variants, including the important class of missense variation. There are many challenges in training accurate computational systems, e.g., in finding the balance between quantity, quality, and bias in the variant sets used as training examples and avoiding predictive features that can accentuate the effects of bias. Here, we describe VARITY, which judiciously exploits a larger reservoir of training examples with uncertain accuracy and representativity. To limit circularity and bias, VARITY excludes features informed by variant annotation and protein identity. To provide a rationale for each prediction, we quantified the contribution of features and feature combinations to the pathogenicity inference of each variant. VARITY outperformed all previous computational methods evaluated, identifying at least 10% more pathogenic variants at thresholds achieving high (90% precision) stringency.
引用
收藏
页码:1891 / 1906
页数:16
相关论文
共 50 条
  • [31] SVPath: an accurate pipeline for predicting the pathogenicity of human exon structural variants
    Yang, Yaning
    Wang, Xiaoqi
    Zhou, Deshan
    Wei, Dong-Qing
    Peng, Shaoliang
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [32] Towards a New, Endophenotype-Based Strategy for Pathogenicity Prediction in BRCA1 and BRCA2: In Silico Modeling of the Outcome of HDR/SGE Assays for Missense Variants
    Ozkan, Selen
    Padilla, Natalia
    de la Cruz, Xavier
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (12)
  • [33] Enhancing missense variant pathogenicity prediction with protein language models using VariPred
    Lin, Weining
    Wells, Jude
    Wang, Zeyuan
    Orengo, Christine
    Martin, Andrew C. R.
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [34] A Comprehensive Evaluation of the Performance of Prediction Algorithms on Clinically Relevant Missense Variants
    Qorri, Erda
    Takacs, Bertalan
    Graf, Alexandra
    Enyedi, Marton Zsolt
    Pinter, Lajos
    Kiss, Erno
    Haracska, Lajos
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (14)
  • [35] StrVCTVRE: A supervised learning method to predict the pathogenicity of human genome structural variants
    Sharo, Andrew G.
    Hu, Zhiqiang
    Sunyaev, Shamil R.
    Brenner, Steven E.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2022, 109 (02) : 195 - 209
  • [36] Molecular and in vivo phenotyping of missense variants of the human glucagon receptor
    van der Velden, Wijnand J. C.
    Lindquist, Peter
    Madsen, Jakob S.
    Stassen, Roderick H. M. J.
    Albrechtsen, Nicolai J. Wewer
    Hoist, Jens J.
    Hauser, Alexander S.
    Rosenkilde, Mette M.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2022, 298 (02)
  • [37] Evaluating novel in silico tools for accurate pathogenicity classification in epilepsy-associated genetic missense variants
    Montanucci, Ludovica
    Bruenger, Tobias
    Bosselmann, Christian M.
    Ivaniuk, Alina
    Perez-Palma, Eduardo
    Lhatoo, Samden
    Leu, Costin
    Lal, Dennis
    EPILEPSIA, 2024, 65 (12) : 3655 - 3663
  • [38] MetaRNN: differentiating rare pathogenic and rare benign missense SNVs and InDels using deep learning
    Li, Chang
    Zhi, Degui
    Wang, Kai
    Liu, Xiaoming
    GENOME MEDICINE, 2022, 14 (01)
  • [39] Machine learning techniques for pathogenicity prediction of non-synonymous single nucleotide polymorphisms in human body
    El Houby, Enas M. F.
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2022, 14 (7) : 8099 - 8113
  • [40] MISTIC: A prediction tool to reveal disease-relevant deleterious missense variants
    Chennen, Kirsley
    Weber, Thomas
    Lornage, Xaviere
    Kress, Arnaud
    Bohm, Johann
    Thompson, Julie
    Laporte, Jocelyn
    Poch, Olivier
    PLOS ONE, 2020, 15 (07):