Improved pathogenicity prediction for rare human missense variants

被引:65
|
作者
Wu, Yingzhou [1 ,2 ,3 ,4 ]
Li, Roujia [1 ,2 ,3 ,4 ]
Sun, Song [1 ,2 ,3 ,4 ]
Weile, Jochen [1 ,2 ,3 ,4 ]
Roth, Frederick P. [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Toronto, Donnelly Ctr, Toronto, ON M5S 3E1, Canada
[2] Univ Toronto, Dept Mol Genet, Toronto, ON M5S 3E1, Canada
[3] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 2E4, Canada
[4] Sinai Hlth, Lunenfeld Tanenbaum Res Inst, Toronto, ON M5G 1X5, Canada
[5] Dana Farber Canc Inst, Ctr Canc Syst Biol, Boston, MA 02215 USA
[6] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada
基金
加拿大健康研究院;
关键词
FUNCTIONAL ASSAYS; MUTATION; IMPACT; CONSEQUENCES; ANNOTATIONS; ELEMENTS; DATABASE;
D O I
10.1016/j.ajhg.2021.08.012
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The success of personalized genomic medicine depends on our ability to assess the pathogenicity of rare human variants, including the important class of missense variation. There are many challenges in training accurate computational systems, e.g., in finding the balance between quantity, quality, and bias in the variant sets used as training examples and avoiding predictive features that can accentuate the effects of bias. Here, we describe VARITY, which judiciously exploits a larger reservoir of training examples with uncertain accuracy and representativity. To limit circularity and bias, VARITY excludes features informed by variant annotation and protein identity. To provide a rationale for each prediction, we quantified the contribution of features and feature combinations to the pathogenicity inference of each variant. VARITY outperformed all previous computational methods evaluated, identifying at least 10% more pathogenic variants at thresholds achieving high (90% precision) stringency.
引用
收藏
页码:1891 / 1906
页数:16
相关论文
共 50 条
  • [21] AI-derived comparative assessment of the performance of pathogenicity prediction tools on missense variants of breast cancer genes
    Ahmad, Rahaf M.
    Ali, Bassam R.
    Al-Jasmi, Fatma
    Al Dhaheri, Noura
    Al Turki, Saeed
    Kizhakkedath, Praseetha
    Mohamad, Mohd Saberi
    HUMAN GENOMICS, 2024, 18 (01)
  • [22] Importance of muscle biopsy to establish pathogenicity of DMD missense and splice variants
    Jones, Hannah F.
    Bryen, Samantha J.
    Waddell, Leigh B.
    Bournazos, Adam
    Davis, Mark
    Farrar, Michelle A.
    McLean, Catriona A.
    Mowat, David R.
    Sampaio, Hugo
    Woodcock, Ian R.
    Ryan, Monique M.
    Jones, Kristi J.
    Cooper, Sandra T.
    NEUROMUSCULAR DISORDERS, 2019, 29 (12) : 913 - 919
  • [23] Improved Detection of Rare Genetic Variants for Diseases
    Zhang, Lei
    Pei, Yu-Fang
    Li, Jian
    Papasian, Christopher J.
    Deng, Hong-Wen
    PLOS ONE, 2010, 5 (11):
  • [24] Enhancing Missense Variant Pathogenicity Prediction with MissenseNet: Integrating Structural Insights and ShuffleNet-Based Deep Learning Techniques
    Liu, Jing
    Chen, Yingying
    Huang, Kai
    Guan, Xiao
    BIOMOLECULES, 2024, 14 (09)
  • [25] A general framework for estimating the relative pathogenicity of human genetic variants
    Kircher, Martin
    Witten, Daniela M.
    Jain, Preti
    O'Roak, Brian J.
    Cooper, Gregory M.
    Shendure, Jay
    NATURE GENETICS, 2014, 46 (03) : 310 - +
  • [26] Performance of in silico prediction tools for the classification of rare BRCA1/2 missense variants in clinical diagnostics
    Ernst, Corinna
    Hahnen, Eric
    Engel, Christoph
    Nothnagel, Michael
    Weber, Jonas
    Schmutzler, Rita K.
    Hauke, Jan
    BMC MEDICAL GENOMICS, 2018, 11
  • [27] DTreePred: an online viewer based on machine learning for pathogenicity prediction of genomic variants
    Gomes, Daniel Henrique Ferreira
    Medeiros, Inacio Gomes
    Petta, Tirzah Braz
    Stransky, Beatriz
    de Souza, Jorge Estefano Santana
    BMC BIOINFORMATICS, 2025, 26 (01): : 101
  • [28] KVarPredDB: a database for predicting pathogenicity of missense sequence variants of keratin genes associated with genodermatoses
    Yuyi Ying
    Lu Lu
    Santasree Banerjee
    Lizhen Xu
    Qiang Zhao
    Hao Wu
    Ruiqi Li
    Xiao Xu
    Hua Yu
    Dante Neculai
    Yongmei Xi
    Fan Yang
    Jiale Qin
    Chen Li
    Human Genomics, 14
  • [29] KVarPredDB: a database for predicting pathogenicity of missense sequence variants of keratin genes associated with genodermatoses
    Ying, Yuyi
    Lu, Lu
    Banerjee, Santasree
    Xu, Lizhen
    Zhao, Qiang
    Wu, Hao
    Li, Ruiqi
    Xu, Xiao
    Yu, Hua
    Neculai, Dante
    Xi, Yongmei
    Yang, Fan
    Qin, Jiale
    Li, Chen
    HUMAN GENOMICS, 2020, 14 (01)
  • [30] Evaluating the relevance of sequence conservation in the prediction of pathogenic missense variants
    Capriotti, Emidio
    Fariselli, Piero
    HUMAN GENETICS, 2022, 141 (10) : 1649 - 1658