Improved pathogenicity prediction for rare human missense variants

被引:65
|
作者
Wu, Yingzhou [1 ,2 ,3 ,4 ]
Li, Roujia [1 ,2 ,3 ,4 ]
Sun, Song [1 ,2 ,3 ,4 ]
Weile, Jochen [1 ,2 ,3 ,4 ]
Roth, Frederick P. [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Toronto, Donnelly Ctr, Toronto, ON M5S 3E1, Canada
[2] Univ Toronto, Dept Mol Genet, Toronto, ON M5S 3E1, Canada
[3] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 2E4, Canada
[4] Sinai Hlth, Lunenfeld Tanenbaum Res Inst, Toronto, ON M5G 1X5, Canada
[5] Dana Farber Canc Inst, Ctr Canc Syst Biol, Boston, MA 02215 USA
[6] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada
基金
加拿大健康研究院;
关键词
FUNCTIONAL ASSAYS; MUTATION; IMPACT; CONSEQUENCES; ANNOTATIONS; ELEMENTS; DATABASE;
D O I
10.1016/j.ajhg.2021.08.012
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The success of personalized genomic medicine depends on our ability to assess the pathogenicity of rare human variants, including the important class of missense variation. There are many challenges in training accurate computational systems, e.g., in finding the balance between quantity, quality, and bias in the variant sets used as training examples and avoiding predictive features that can accentuate the effects of bias. Here, we describe VARITY, which judiciously exploits a larger reservoir of training examples with uncertain accuracy and representativity. To limit circularity and bias, VARITY excludes features informed by variant annotation and protein identity. To provide a rationale for each prediction, we quantified the contribution of features and feature combinations to the pathogenicity inference of each variant. VARITY outperformed all previous computational methods evaluated, identifying at least 10% more pathogenic variants at thresholds achieving high (90% precision) stringency.
引用
收藏
页码:1891 / 1906
页数:16
相关论文
共 50 条
  • [1] Rhapsody: predicting the pathogenicity of human missense variants
    Ponzoni, Luca
    Penaherrera, Daniel A.
    Oltvai, Zoltan N.
    Bahar, Ivet
    BIOINFORMATICS, 2020, 36 (10) : 3084 - 3092
  • [2] InMeRF: prediction of pathogenicity of missense variants by individual modeling for each amino acid substitution
    Takeda, Jun-ichi
    Nanatsue, Kentaro
    Yamagishi, Ryosuke
    Ito, Mikako
    Haga, Nobuhiko
    Hirata, Hiromi
    Ogi, Tomoo
    Ohno, Kinji
    NAR GENOMICS AND BIOINFORMATICS, 2020, 2 (02)
  • [3] Performance of Mutation Pathogenicity Prediction Methods on Missense Variants
    Thusberg, Janita
    Olatubosun, Ayodeji
    Vihinen, Mauno
    HUMAN MUTATION, 2011, 32 (04) : 358 - 368
  • [4] mvPPT: A Highly Efficient and Sensitive Pathogenicity Prediction Tool for Missense Variants
    Tong, Shi-Yuan
    Fan, Ke
    Zhou, Zai-Wei
    Liu, Lin-Yun
    Zhang, Shu-Qing
    Fu, Yinghui
    Wang, Guang-Zhong
    Zhu, Ying
    Yu, Yong-Chun
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (02) : 414 - 426
  • [5] REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants
    Ioannidis, Nilah M.
    Rothstein, Joseph H.
    Pejaver, Vikas
    Middha, Sumit
    McDonnell, Shannon K.
    Baheti, Saurabh
    Musolf, Anthony
    Li, Qing
    Holzinger, Emily
    Karyadi, Danielle
    Cannon-Albright, Lisa A.
    Teerlink, Craig C.
    Stanford, Janet L.
    Isaacs, William B.
    Xu, Jianfeng
    Cooney, Kathleen A.
    Lange, Ethan M.
    Schleutker, Johanna
    Carpten, John D.
    Powell, Isaac J.
    Cussenot, Olivier
    Cancel-Tassin, Geraldine
    Giles, Graham G.
    MacInnis, Robert J.
    Maier, Christiane
    Hsieh, Chih-Lin
    Wiklund, Fredrik
    Catalona, William J.
    Foulkes, William D.
    Mandal, Diptasri
    Eeles, Rosalind A.
    Kote-Jarai, Zsofia
    Bustamante, Carlos D.
    Schaid, Daniel J.
    Hastie, Trevor
    Ostrander, Elaine A.
    Bailey-Wilson, Joan E.
    Radivojac, Predrag
    Thibodeau, Stephen N.
    Whittemore, Alice S.
    Sieh, Weiva
    AMERICAN JOURNAL OF HUMAN GENETICS, 2016, 99 (04) : 877 - 885
  • [6] PdmIRD: missense variants pathogenicity prediction for inherited retinal diseases in a disease-specific manner
    Zeng, Bing
    Liu, Dong Cheng
    Huang, Jian Guo
    Xia, Xiao Bo
    Qin, Bo
    HUMAN GENETICS, 2024, 143 (03) : 331 - 342
  • [7] A domain damage index to prioritizing the pathogenicity of missense variants
    Chen, Hua-Chang
    Wang, Jing
    Liu, Qi
    Shyr, Yu
    HUMAN MUTATION, 2021, 42 (11) : 1503 - 1517
  • [8] MVP predicts the pathogenicity of missense variants by deep learning
    Qi, Hongjian
    Zhang, Haicang
    Zhao, Yige
    Chen, Chen
    Long, John J.
    Chung, Wendy K.
    Guan, Yongtao
    Shen, Yufeng
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [9] Analysis of missense variants in the human genome reveals widespread gene-specific clustering and improves prediction of pathogenicity
    Quinodoz, Mathieu
    Peter, Virginie G.
    Cisarova, Katarina
    Royer-Bertrand, Beryl
    Stenson, Peter D.
    Cooper, David N.
    Unger, Sheila
    Superti-Furga, Andrea
    Rivolta, Carlo
    AMERICAN JOURNAL OF HUMAN GENETICS, 2022, 109 (03) : 457 - 470
  • [10] Comparison of Pathogenicity Prediction Tools on Somatic Variants
    Suybeng, Voreak
    Koeppel, Florence
    Harle, Alexandre
    Rouleau, Etienne
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2020, 22 (12) : 1383 - 1392