Bounds for the adiabatic approximation with applications to quantum computation

被引:297
作者
Jansen, Sabine
Ruskai, Mary-Beth
Seiler, Ruedi
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[2] Tufts Univ, Dept Math, Medford, MA 02155 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2798382
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present straightforward proofs of estimates used in the adiabatic approximation. The gap dependence is analyzed explicitly. We apply the result to interpolating Hamiltonians of interest in quantum computing. (C) 2007 American Institute of Physics.
引用
收藏
页数:15
相关论文
共 31 条
[1]  
AMBAINIS A, ARXIQQUANTPH0411152
[2]   ADIABATIC THEOREMS AND APPLICATIONS TO THE QUANTUM HALL-EFFECT (VOL 110, PG 33, 1987) [J].
AVRON, JE ;
SEILER, R ;
YAFFE, LG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 156 (03) :649-650
[3]   Adiabatic theorem without a gap condition [J].
Avron, JE ;
Elgart, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (02) :445-463
[4]   ADIABATIC THEOREMS AND APPLICATIONS TO THE QUANTUM HALL-EFFECT [J].
AVRON, JE ;
SEILER, R ;
YAFFE, LG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 110 (01) :33-49
[6]  
Born M, 1927, ANN PHYS-BERLIN, V84, P0457
[7]   Proof of Adiabatic law [J].
Born, M. ;
Fock, V. .
ZEITSCHRIFT FUR PHYSIK, 1928, 51 (3-4) :165-180
[8]  
BORNEMANN V, 1998, LECT NOTES MATH, V1687
[9]  
Elgart A., 2006, WORKSH MATH ASP QUAN
[10]   A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem [J].
Farhi, E ;
Goldstone, J ;
Gutmann, S ;
Lapan, J ;
Lundgren, A ;
Preda, D .
SCIENCE, 2001, 292 (5516) :472-476