Viscosity Solutions to a Parabolic Inhomogeneous Equation Associated with Infinity Laplacian

被引:1
作者
Liu, Fang [1 ]
Yang, Xiao Ping [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Sci, Dept Appl Math, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Parabolic equation; infinity Laplacian; viscosity solution; inhomogeneous equation; comparison principle; existence; TUG-OF-WAR; MINIMIZATION PROBLEMS; LIPSCHITZ EXTENSIONS; ASYMPTOTIC-BEHAVIOR; UNIQUENESS; F'(X));
D O I
10.1007/s10114-015-3244-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain the existence and uniqueness results of viscosity solutions to the initial and boundary value problem for a nonlinear degenerate and singular parabolic inhomogeneous equation of the form u(t) - Delta(N)(infinity)u = f, where Delta(N)(infinity)u denotes the so-called normalized infinity Laplacian given by Delta(N)(infinity)u = 1/|Du|(2) < D(2)uDu, Du >.
引用
收藏
页码:255 / 271
页数:17
相关论文
共 31 条
[1]  
Akagi G., 2007, DISCRETE CONTIN DY S, P18
[2]   Existence and uniqueness of viscosity solutions for a degenerate parabolic equation associated with the infinity-Laplacian [J].
Akagi, Goro ;
Suzuki, Kazumasa .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 31 (04) :457-471
[3]   Asymptotic behavior of viscosity solutions for a degenerate parabolic equation associated with the infinity-Laplacian [J].
Akagi, Goro ;
Juutinen, Petri ;
Kajikiya, Ryuji .
MATHEMATISCHE ANNALEN, 2009, 343 (04) :921-953
[4]  
[Anonymous], ELECT J DIFF EQU
[5]  
Armstrong SN, 2012, T AM MATH SOC, V364, P595
[6]   AN INFINITY LAPLACE EQUATION WITH GRADIENT TERM AND MIXED BOUNDARY CONDITIONS [J].
Armstrong, Scott N. ;
Smart, Charles K. ;
Somersille, Stephanie J. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (05) :1763-1776
[7]   EXTENSION OF FUNCTIONS SATISFYING LIPSCHITZ CONDITIONS [J].
ARONSSON, G .
ARKIV FOR MATEMATIK, 1967, 6 (06) :551-&
[8]   A tour of the theory of absolutely minimizing functions [J].
Aronsson, G ;
Crandall, MG ;
Juutinen, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 41 (04) :439-505
[9]   MINIMIZATION PROBLEMS FOR FUNCTIONAL SUPX F(X F(X) F'(X)) [J].
ARONSSON, G .
ARKIV FOR MATEMATIK, 1965, 6 (01) :33-&
[10]  
ARONSSON G, 1966, ARK MAT, V6, P409