Clustering of Electrons and the Filling Factor in Quantum Hall Effect

被引:0
|
作者
Ali, Maher M. A. [1 ]
Abu Kassim, Hasan [1 ]
Shrivastava, Keshav N. [1 ]
机构
[1] Univ Malaya, Dept Phys, Kuala Lumpur 50603, Malaysia
来源
PROGRESS OF PHYSICS RESEARCH IN MALAYSIA, PERFIK2009 | 2010年 / 1250卷
关键词
Clustering; quantum Hall;
D O I
10.1063/1.3469650
中图分类号
O59 [应用物理学];
学科分类号
摘要
The relative angular momentum of two particles, L-2 is used to define a projection operator P-2(p) which corresponds to the relative angular momentum L-2+p the filling factor is defined by v = 1 /(L-2(min) + p). The number of particles is g. If one more particle comes near it for the purpose of forming a cluster, the filling factor becomes v = [(1/2)g(g + 1) + p](-1). The g=2, p=4 is called Haffnian and g=2, p=3 is called Gaffnian. For g=2, p=3, v=1/6. This state has a ground state of a special pseudopotential type Hamiltonian. Given a fraction, we find the ground state energy of a special Hamiltonian. The state wave function, the ground state energy and the special Hamiltonian are linked together. In this methodology, the flux quanta can not be attached to the electrons and the projection operator is not linked to the Coulomb Hamiltonian. Therefore, composite fermions (CF) with the flux quanta attached to the electrons, suggested by Jain cannot satisfy the wave functions, the Hamiltonian and the ground state requirements. The calculated ground state does not attach flux quanta.
引用
收藏
页码:253 / 256
页数:4
相关论文
共 50 条
  • [1] Problems with the filling factor in the quantum Hall effect
    Narnhofer, H
    Thirring, W
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (47): : 10253 - 10266
  • [2] The quantum Hall effect at 5/2 filling factor
    Willett, R. L.
    REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (07)
  • [3] Filling factor dependence of the fractional quantum hall effect gap
    Khrapai, V. S.
    Shashkin, A. A.
    Trokina, M. G.
    Dolgopolov, V. T.
    Pellegrini, V.
    Beltram, F.
    Biasiol, G.
    Sorba, L.
    PHYSICAL REVIEW LETTERS, 2008, 100 (19)
  • [4] Wigner crystal state for the edge electrons in the quantum Hall effect at filling ν=2
    Rodriguez, JP
    Franco, MJ
    Brey, L
    PHYSICAL REVIEW B, 2000, 61 (24) : 16787 - 16795
  • [6] BREAKDOWN OF THE QUANTUM HALL-EFFECT AS A FUNCTION OF THE FILLING FACTOR AND THE CONTACT CONFIGURATION
    NACHTWEI, G
    BREITLOW, C
    JAEGER, A
    BREITLOWHERTZFELDT, J
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1992, 4 (15) : 4003 - 4015
  • [7] Atypical Fractional Quantum Hall Effect in Graphene at Filling Factor 1/3
    Papic, Z.
    Goerbig, M. O.
    Regnault, N.
    PHYSICAL REVIEW LETTERS, 2010, 105 (17)
  • [8] Anomalous interaction between electrons and nuclear spins at ν=2/3 filling of the fractional quantum Hall effect
    Dietsche, W
    Kronmüller, S
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2001, 10 (1-3): : 71 - 76
  • [9] Bosonic Halperin(441) Fractional Quantum Hall Effect at Filling Factor ν = 2/5
    曾天生
    胡梁栋
    朱伟
    Chinese Physics Letters, 2022, 39 (01) : 39 - 44
  • [10] Bosonic Halperin (441) Fractional Quantum Hall Effect at Filling Factor ν=2/5
    Zeng, Tian-Sheng
    Hu, Liangdong
    Zhu, W.
    CHINESE PHYSICS LETTERS, 2022, 39 (01)