Toward Autonomic Cloud: Automatic Anomaly Detection and Resolution

被引:11
作者
Ahad, Rafiul [1 ]
Chan, Eric [1 ]
Santos, Adriano [1 ]
机构
[1] Oracle Corp, Redwood Shores, CA 94065 USA
来源
2015 INTERNATIONAL CONFERENCE ON CLOUD AND AUTONOMIC COMPUTING (ICCAC) | 2015年
关键词
Cloud; Autonomic Systems; Anomaly; Rule-Based;
D O I
10.1109/ICCAC.2015.32
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we describe an approach to implement an autonomic cloud. Our approach is based on our belief that if a computing system can automatically detect and correct anomalies - including response time anomalies, load anomalies, resource usage anomalies, and outages - then it can go a long way in reducing human involvement in keeping the system up, and that can lead to an autonomic system. We focus on a class of anomalies that are defined by normal values expected of key metrics. We describe a hierarchical rule-based anomaly detection and resolution framework for such a class of metrics.
引用
收藏
页码:200 / 203
页数:4
相关论文
共 9 条
[1]  
Buyya Rajkumar, 2012, 3 INT C EM APPL INF
[2]  
Fu Song, 2011, IEEE GLOBECOM
[3]  
Gupta M, 2014, IEEE T KNOWL DATA EN, V25, P1
[4]  
IBM Research, 2001, AUT COMP MAN
[5]  
Martins Joberto Sergio Barbosa, 2009, J NETWORKS, V4
[6]  
Santos Adriano, 2013, 2 TIER ADAPTIVE HEAP
[7]  
Smith D., 2010, IEEE COMP SOFTW APPL
[8]  
Tchana A., 2010, IRIT ENSEEIHT JTE
[9]  
Xu Wei, 2009, P ACM SIGOPS