Passivation of H-terminated diamond with MOCVD-aluminium nitride - a key to understand and stabilize its surface conductivity

被引:16
作者
Kueck, Daniel [1 ]
Scharpf, Jochen [1 ]
Ebert, Wolfgang [1 ]
Fikry, Mohamed [2 ]
Scholz, Ferdinand [2 ]
Kohn, Erhard [1 ]
机构
[1] Univ Ulm, Inst Elect Devices & Circuits, D-89081 Ulm, Germany
[2] Univ Ulm, Inst Optoelect, D-89081 Ulm, Germany
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2010年 / 207卷 / 09期
关键词
AlN; FET; H-terminated diamond; passivation; HYDROGEN; FABRICATION; TRANSISTORS; CHANNEL; GROWTH; ALN;
D O I
10.1002/pssa.201000072
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The surface conductivity of hydrogen (H)-terminated diamond still suffers from instabilities at high temperature especially in O-containing atmosphere and/or under high power FET device operation. For devices based on this H-induced surface conductivity concept, stabilization is thus essential. In this investigation AlN, deposited by MOCVD at 800 degrees C, has been used as passivation and gate dielectric in Surface Channel MESFET and MISFET structures. Despite the high deposition temperature, the H-induced channel is still present in the case of both structures and can be fully modulated. Surface Channel MESFETs yield a maximum output current density of 200 mA/mm (at p(S) = 9.5 x 10(12) cm(-2)) in enhancement mode of operation. MISFETs display 20 mA/mm current density (at p(S) = 2.1 x 10(12) cm(-2)) in semi-enhancement mode of operation, the maximum current being limited by AlN dielectric breakdown. The film shows strong adhesion. To explain all features consistently, it is proposed that the interfacial bonding is provided by a H-double bond. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:2035 / 2039
页数:5
相关论文
共 21 条
[1]   Diamond MISFET based on boron delta-doped channel [J].
El-Haji, H. ;
Denisenko, A. ;
Kaiser, A. ;
Balmer, R. S. ;
Kohn, E. .
DIAMOND AND RELATED MATERIALS, 2008, 17 (7-10) :1259-1263
[2]   Quantization of 2D hole gas in conductive hydrogenated diamond surfaces observed by electron field emission [J].
Gan, L. ;
Baskin, E. ;
Saguy, C. ;
Kalish, R. .
PHYSICAL REVIEW LETTERS, 2006, 96 (19)
[3]   DIAMOND TRANSISTOR PERFORMANCE AND FABRICATION [J].
GEIS, MW .
PROCEEDINGS OF THE IEEE, 1991, 79 (05) :669-676
[4]  
HIRAMA K, 2007, EL DEV M 2007 IEDM 2, P873
[5]   Growth mechanism of c-axis-oriented AlN on (001) diamond substrates by metal-organic vapor phase epitaxy [J].
Imura, Masataka ;
Nakajima, Kiyomi ;
Liao, Meiyong ;
Koide, Yasuo ;
Amano, Hiroshi .
JOURNAL OF CRYSTAL GROWTH, 2010, 312 (03) :368-372
[6]   Diamond-based RF power transistors: Fundamentals and applications [J].
Kasu, M. ;
Ueda, K. ;
Yamauchi, Y. ;
Tallaire, A. ;
Makimoto, T. .
DIAMOND AND RELATED MATERIALS, 2007, 16 (4-7) :1010-1015
[7]   Gate interfacial layer in hydrogen-terminated diamond field-effect transistors [J].
Kasu, Makoto ;
Ueda, Kenji ;
Kageshima, Hiroyuki ;
Yamauchi, Yoshiharu .
DIAMOND AND RELATED MATERIALS, 2008, 17 (4-5) :741-744
[8]   Hydrogen-terminated diamond surfaces and interfaces [J].
Kawarada, H .
SURFACE SCIENCE REPORTS, 1996, 26 (07) :205-259
[9]   Dihydrogen bonding, p-type conductivity, and origin of change in work function of hydrogenated diamond (001) surfaces [J].
Kim, Yong-Hyun ;
Zhang, S. B. ;
Yu, Yang ;
Xu, L. F. ;
Gu, C. Z. .
PHYSICAL REVIEW B, 2006, 74 (07)
[10]   Electronic surface barrier characteristics of H-terminated and surface conductive diamond [J].
Kubovic, A ;
Denisenko, A ;
Ebert, W ;
Kasu, M ;
Kallfass, I ;
Kohn, E .
DIAMOND AND RELATED MATERIALS, 2004, 13 (4-8) :755-760