Random Burgers equation and Lagrangian systems in non-compact domains

被引:20
作者
Hoang, VH
Khanin, K
机构
[1] Univ Cambridge, DAMTP, Cambridge CB3 9EW, England
[2] Isaac Newton Inst Math Sci, Cambridge CB3 0EH, England
关键词
D O I
10.1088/0951-7715/16/3/303
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study stationary distributions for randomly forced Burgers and Hamilton-Jacobi equations in R-d in the case when the forcing potentials have a large global maxima and a small global minima in a compact part of R-d. We also study the structure of minimizing trajectories for corresponding random Lagrangian systems.
引用
收藏
页码:819 / 842
页数:24
相关论文
共 25 条
[1]  
AUBRY S, 1992, IMA VOLUMES MATH APP, V44, P7
[2]   Intermittency of Burgers' turbulence [J].
Balkovsky, E ;
Falkovich, G ;
Kolokolov, I ;
Lebedev, V .
PHYSICAL REVIEW LETTERS, 1997, 78 (08) :1452-1455
[3]   Topological shocks in Burgers turbulence [J].
Bec, J ;
Iturriaga, R ;
Khanin, K .
PHYSICAL REVIEW LETTERS, 2002, 89 (02) :245011-245014
[4]   Kicked Burgers turbulence [J].
Bec, J ;
Frisch, U ;
Khanin, K .
JOURNAL OF FLUID MECHANICS, 2000, 416 :239-267
[5]  
BEC J, 2002, UNPUB J STAT PHYS
[6]  
BECK J, 2001, PHYS REV LETT, V87, DOI UNSP 104501
[7]   Velocity-difference probability density functions for Burgers turbulence [J].
Boldyrev, SA .
PHYSICAL REVIEW E, 1997, 55 (06) :6907-6910
[8]   Multibump orbits near the anti-integrable limit for Lagrangian systems [J].
Bolotin, S ;
MacKay, R .
NONLINEARITY, 1997, 10 (05) :1015-1029
[9]   SCALING AND INTERMITTENCY IN BURGERS TURBULENCE [J].
BOUCHAUD, JP ;
MEZARD, M ;
PARISI, G .
PHYSICAL REVIEW E, 1995, 52 (04) :3656-3674
[10]   KOLMOGOROV TURBULENCE IN A RANDOM-FORCE-DRIVEN BURGERS-EQUATION [J].
CHEKHLOV, A ;
YAKHOT, V .
PHYSICAL REVIEW E, 1995, 51 (04) :R2739-R2742