A Novel Method for Groups Identification Based on Spatio-Temporal Trajectories

被引:0
|
作者
Cai, Zhi [1 ]
Ji, Meilin [1 ]
Ren, Hongbing [2 ]
Mi, Qing [1 ]
Guo, Limin [1 ]
Ding, Zhiming [1 ,3 ]
机构
[1] Beijing Univ Technol, Coll Comp Sci, Beijing 100124, Peoples R China
[2] Chengdu Microclouds Technol Co Ltd, Chengdu 610000, Peoples R China
[3] Chinese Acad Sci, Beijing Key Lab Integrat & Anal Large Scale Strea, Beijing 100144, Peoples R China
来源
SPATIAL DATA AND INTELLIGENCE, SPATIALDI 2022 | 2022年 / 13614卷
基金
北京市自然科学基金;
关键词
Trajectory; Moving object data; Clustering analysis; Groups identification; SEMANTIC TRAJECTORIES; DISCOVERY;
D O I
10.1007/978-3-031-24521-3_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the rapid development of sensing hard-devices, wireless communication technologies and smart mobile devices, a large number of data for moving objects have been collected, among which a group of high precision data (e.g., GPS) are widely used for traffic predictions and management. However, in modern city life, a large volume of positioning data of moving objects is collected with low-precision positions, which causes the difficulty for trajectory match, analysis or group identification. In view of this limitation, this paper proposes a novel method for the semantic trajectory based group identification. Specifically, the trajectory data are used to discover the spatial and semantic information of persons to calculate their similarities. Based on which, the groups of persons with strong correlations are identified. To evaluate our method, we conduct several experiments on Geolife dataset. The experimental results show that the proposed method has a significant effect on the group identification.
引用
收藏
页码:264 / 280
页数:17
相关论文
共 50 条
  • [41] Dual Supervised Autoencoder Based Trajectory Classification Using Enhanced Spatio-Temporal Information
    Lu, Sichong
    Xia, Ying
    IEEE ACCESS, 2020, 8 (08): : 173918 - 173932
  • [42] Spatio-Temporal Digraph Convolutional Network-Based Taxi Pickup Location Recommendation
    Zhang, Yan
    Shen, Guojiang
    Han, Xiao
    Wang, Wei
    Kong, Xiangjie
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (01) : 394 - 403
  • [43] Trajectory Planning Based on Spatio-Temporal Map With Collision Avoidance Guaranteed by Safety Strip
    Zhang, Ting
    Fu, Mengyin
    Song, Wenjie
    Yang, Yi
    Wang, Meiling
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (02) : 1030 - 1043
  • [44] Searching for Spatio-Temporal-Keyword Patterns in Semantic Trajectories
    Gryllakis, Fragkiskos
    Pelekis, Nikos
    Doulkeridis, Christos
    Sideridis, Stylianos
    Theodoridis, Yannis
    ADVANCES IN INTELLIGENT DATA ANALYSIS XVI, IDA 2017, 2017, 10584 : 112 - 124
  • [45] Spatio-Temporal Reconstruction for 3D Motion Recovery
    Yang, Jingyu
    Guo, Xin
    Li, Kun
    Wang, Meiyuan
    Lai, Yu-Kun
    Wu, Feng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (06) : 1583 - 1596
  • [46] Spatio-temporal distribution of NDVI and its influencing factors in China
    Jin, Haoyu
    Chen, Xiaohong
    Wang, Yuming
    Zhong, Ruida
    Zhao, Tongtiegang
    Liu, Zhiyong
    Tu, Xinjun
    JOURNAL OF HYDROLOGY, 2021, 603
  • [47] Group Vehicle Trajectory Prediction With Global Spatio-Temporal Graph
    Xu, Dongwei
    Shang, Xuetian
    Liu, Yewanze
    Peng, Hang
    Li, Haijian
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (02): : 1219 - 1229
  • [48] Approximate spatio-temporal top-k publish/subscribe
    Chen, Lisi
    Shang, Shuo
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2019, 22 (05): : 2153 - 2175
  • [49] Hierarchical trajectory clustering for spatio-temporal periodic pattern mining
    Zhang, Dongzhi
    Lee, Kyungmi
    Lee, Ickjai
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 92 : 1 - 11
  • [50] HSTA: A Hierarchical Spatio-Temporal Attention Model for Trajectory Prediction
    Wu, Ya
    Chen, Guang
    Li, Zhijun
    Zhang, Lijun
    Xiong, Lu
    Liu, Zhengfa
    Knoll, Alois
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (11) : 11295 - 11307