Some exact solutions of the fin problem with a power law temperature-dependent thermal conductivity

被引:72
作者
Moitsheki, R. J. [1 ]
Hayat, T. [1 ]
Malik, M. Y. [1 ]
机构
[1] Univ Witwatersrand, Sch Computat & Appl Math, Ctr Differential Equat Continuum Mech & Applicat, ZA-2050 Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Nonlinear fin equation; Heat transfer; Invariant solutions; ORDINARY DIFFERENTIAL-EQUATIONS; THIN-FILM FLOWS; GROUP CLASSIFICATION; HEAT-TRANSFER; SERIES SOLUTION;
D O I
10.1016/j.nonrwa.2009.11.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study investigates the exact solutions of a nonlinear fin problem with temperature-dependent thermal conductivity and the heat transfer coefficient. Both the conduction anti heat transfer terms are given by the same power law in one case and the distinct power law in the other. Classical Lie symmetry techniques are employed to construct the exact solutions which satisfy the realistic boundary conditions. The effects of the physical applicable parameters such as the thermo-geometric fin parameter and the fin efficiency are analyzed. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3287 / 3294
页数:8
相关论文
共 29 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS
[2]   Derivation of the Adomian decomposition method using the homotopy analysis method [J].
Allan, Fathi M. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) :6-14
[3]   PERIODIC HEAT-TRANSFER IN FINS WITH VARIABLE THERMAL PARAMETERS [J].
AZIZ, A ;
NA, TY .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1981, 24 (08) :1397-1404
[4]   Equivalence of ordinary differential equations y"=R(x,y)y′2+2Q(x,y)y′+P(x,y) [J].
Bagderina, Yu. Yu. .
DIFFERENTIAL EQUATIONS, 2007, 43 (05) :595-604
[5]  
Bluman G. W., 2013, Symmetries and Differential Equations, V81
[6]  
Bluman GW., 2002, Symmetry and integration methods for differential equations
[7]   A note on a symmetry analysis and exact solutions of a nonlinear fin equation [J].
Bokhari, A. H. ;
Kara, A. H. ;
Zaman, F. D. .
APPLIED MATHEMATICS LETTERS, 2006, 19 (12) :1356-1360
[8]  
HEARN AC, 1985, REDUCE USERS MANUAL
[9]  
Ibragimov N. H., 2004, Communications in Nonlinear Science and Numerical Simulation, V9, P61, DOI 10.1016/S1007-5704(03)00015-7
[10]   PRELIMINARY GROUP CLASSIFICATION OF EQUATIONS VTT=F(X,VX)VXX+G(X,VX) [J].
IBRAGIMOV, NH ;
TORRISI, M ;
VALENTI, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (11) :2988-2995