Optimal Control Problem for a Degenerate Fractional Differential Equation

被引:7
|
作者
Bandaliyev, R. A. [1 ,2 ]
Mamedov, I. G. [3 ]
Abdullayeva, A. B. [1 ]
Safarova, K. H. [1 ]
机构
[1] Azerbaijan Natl Acad Sci, Inst Math & Mech, Baku, Azerbaijan
[2] RUDN Univ, SM Nikolskii Inst Math, Moscow 117198, Russia
[3] Azerbaijan Natl Acad Sci, Inst Control Syst, Baku, Azerbaijan
关键词
degenerate fractional optimal control problem; initial value problem; Caputo fractional derivative; Lebesgue spaces; Pontryagin's maximum principle; EXISTENCE;
D O I
10.1134/S1995080221060056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, on the base of Pontryagin maximum principle, the optimal control problem with concentrated parameters for a degenerate differential equation with the Caputo operator and with coefficients from the Lebesgue space is studied. The efficiency indicator of the considered optimal control problem has an integral form of fractional order. A new version of the method of increments is applied and the concept of a conjugate equation with an integral form is essentially used.
引用
收藏
页码:1239 / 1247
页数:9
相关论文
共 50 条
  • [41] Periodic optimal control for a degenerate nonlinear diffusion equation
    Wang C.
    Yin J.
    Wen M.
    Computational Mathematics and Modeling, 2006, 17 (4) : 364 - 375
  • [42] On the Weak Solvability of Dirichlet Problem for a Fractional Order Degenerate Elliptic Equation
    Mamedov, F. I.
    Mammadzada, N. M.
    Mammadli, S. M.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2024, 14 (01): : 69 - 78
  • [43] BOUNDARY VALUE PROBLEM FOR DEGENERATE ELLIPTIC PARTIAL DIFFERENTIAL EQUATION
    DONG, GC
    SCIENTIA SINICA, 1964, 13 (05): : 697 - &
  • [44] ON THE SOURCE IDENTIFICATION PROBLEM FOR A DEGENERATE TIME-FRACTIONAL DIFFUSION EQUATION
    Nouar, Maroua
    Chattouh, Abdeldjalil
    JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 15 (05): : 84 - 98
  • [45] Approximation of an optimal control problem for the time-fractional Fokker-Planck equation
    Camilli, Fabio
    Duisembay, Serikbolsyn
    Tang, Qing
    arXiv, 2020,
  • [46] Optimal control problem of parabolic differential equation with two point boundary condition
    Wang, GS
    Liu, CL
    ACTA MATHEMATICA SCIENTIA, 1999, 19 (02) : 138 - 147
  • [47] On the solution of the Riccati differential equation arising from the LQ optimal control problem
    Ntogramatzidis, Lorenzo
    Ferrante, Augusto
    SYSTEMS & CONTROL LETTERS, 2010, 59 (02) : 114 - 121
  • [48] A Singular Differential Equation Stemming from an Optimal Control Problem in Financial Economics
    Brunovsky, Pavol
    Cerny, Ales
    Winkler, Michael
    APPLIED MATHEMATICS AND OPTIMIZATION, 2013, 68 (02): : 255 - 274
  • [49] A Singular Differential Equation Stemming from an Optimal Control Problem in Financial Economics
    Pavol Brunovský
    Aleš Černý
    Michael Winkler
    Applied Mathematics & Optimization, 2013, 68 : 255 - 274
  • [50] Finite element method for an optimal control problem governed by a time fractional wave equation
    Wang, Shuo
    Zheng, Xiangcheng
    Du, Ning
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 164 : 45 - 66