Optimal Control Problem for a Degenerate Fractional Differential Equation

被引:7
|
作者
Bandaliyev, R. A. [1 ,2 ]
Mamedov, I. G. [3 ]
Abdullayeva, A. B. [1 ]
Safarova, K. H. [1 ]
机构
[1] Azerbaijan Natl Acad Sci, Inst Math & Mech, Baku, Azerbaijan
[2] RUDN Univ, SM Nikolskii Inst Math, Moscow 117198, Russia
[3] Azerbaijan Natl Acad Sci, Inst Control Syst, Baku, Azerbaijan
关键词
degenerate fractional optimal control problem; initial value problem; Caputo fractional derivative; Lebesgue spaces; Pontryagin's maximum principle; EXISTENCE;
D O I
10.1134/S1995080221060056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, on the base of Pontryagin maximum principle, the optimal control problem with concentrated parameters for a degenerate differential equation with the Caputo operator and with coefficients from the Lebesgue space is studied. The efficiency indicator of the considered optimal control problem has an integral form of fractional order. A new version of the method of increments is applied and the concept of a conjugate equation with an integral form is essentially used.
引用
收藏
页码:1239 / 1247
页数:9
相关论文
共 50 条
  • [1] Optimal Control Problem for a Degenerate Fractional Differential Equation
    R. A. Bandaliyev
    I. G. Mamedov
    A. B. Abdullayeva
    K. H. Safarova
    Lobachevskii Journal of Mathematics, 2021, 42 : 1239 - 1247
  • [2] Fractional optimal control problem for ordinary differential equation in weighted Lebesgue spaces
    Bandaliyev, R. A.
    Mamedov, I. G.
    Mardanov, M. J.
    Melikov, T. K.
    OPTIMIZATION LETTERS, 2020, 14 (06) : 1519 - 1532
  • [3] Fractional optimal control problem for ordinary differential equation in weighted Lebesgue spaces
    R. A. Bandaliyev
    I. G. Mamedov
    M. J. Mardanov
    T. K. Melikov
    Optimization Letters, 2020, 14 : 1519 - 1532
  • [4] Spectral Galerkin approximation of optimal control problem governed by Riesz fractional differential equation
    Zhang, Lu
    Zhou, Zhaojie
    APPLIED NUMERICAL MATHEMATICS, 2019, 143 : 247 - 262
  • [5] On optimal boundary control problem for a strongly degenerate elliptic equation
    Durante, Tiziana
    Kupenko, Olha P.
    Manzo, Rosanna
    REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (01): : 63 - 88
  • [6] On optimal boundary control problem for a strongly degenerate elliptic equation
    Tiziana Durante
    Olha P. Kupenko
    Rosanna Manzo
    Revista Matemática Complutense, 2020, 33 : 63 - 88
  • [7] Fractional Optimal Control Problem for Differential System with Control Constraints
    Bahaa, G. M.
    FILOMAT, 2016, 30 (08) : 2177 - 2189
  • [8] Optimal Control Problem for a Conformable Fractional Heat Conduction Equation
    Eroglu, B. B. Iskender
    Avci, D.
    Ozdemir, N.
    ACTA PHYSICA POLONICA A, 2017, 132 (03) : 658 - 662
  • [9] A FEM for an optimal control problem subject to the fractional Laplace equation
    Stefan Dohr
    Christian Kahle
    Sergejs Rogovs
    Piotr Swierczynski
    Calcolo, 2019, 56
  • [10] On the Solution of Fractional Burgers' Equation and Its Optimal Control Problem
    Svetlin G.Georgiev
    Fatemeh Mohammadizadeh
    Hojjat A.Tehrani
    M.H.Noori Skandari
    Analysis in Theory and Applications, 2019, (04) : 405 - 420