Optimal Control Problem for a Degenerate Fractional Differential Equation

被引:7
|
作者
Bandaliyev, R. A. [1 ,2 ]
Mamedov, I. G. [3 ]
Abdullayeva, A. B. [1 ]
Safarova, K. H. [1 ]
机构
[1] Azerbaijan Natl Acad Sci, Inst Math & Mech, Baku, Azerbaijan
[2] RUDN Univ, SM Nikolskii Inst Math, Moscow 117198, Russia
[3] Azerbaijan Natl Acad Sci, Inst Control Syst, Baku, Azerbaijan
关键词
degenerate fractional optimal control problem; initial value problem; Caputo fractional derivative; Lebesgue spaces; Pontryagin's maximum principle; EXISTENCE;
D O I
10.1134/S1995080221060056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, on the base of Pontryagin maximum principle, the optimal control problem with concentrated parameters for a degenerate differential equation with the Caputo operator and with coefficients from the Lebesgue space is studied. The efficiency indicator of the considered optimal control problem has an integral form of fractional order. A new version of the method of increments is applied and the concept of a conjugate equation with an integral form is essentially used.
引用
收藏
页码:1239 / 1247
页数:9
相关论文
共 50 条
  • [1] Optimal Control Problem for a Degenerate Fractional Differential Equation
    R. A. Bandaliyev
    I. G. Mamedov
    A. B. Abdullayeva
    K. H. Safarova
    Lobachevskii Journal of Mathematics, 2021, 42 : 1239 - 1247
  • [2] Fractional optimal control problem for ordinary differential equation in weighted Lebesgue spaces
    Bandaliyev, R. A.
    Mamedov, I. G.
    Mardanov, M. J.
    Melikov, T. K.
    OPTIMIZATION LETTERS, 2020, 14 (06) : 1519 - 1532
  • [3] Fractional optimal control problem for ordinary differential equation in weighted Lebesgue spaces
    R. A. Bandaliyev
    I. G. Mamedov
    M. J. Mardanov
    T. K. Melikov
    Optimization Letters, 2020, 14 : 1519 - 1532
  • [4] Optimal Control Problem of Positive Solutions to Fractional Differential Equations
    Wang, Jun
    Zhang, Lingling
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 10136 - 10140
  • [5] Optimal Control of Positive Solution to Initial Value Problem for Fractional Integro-differential Equations
    Zhang, Yongjie
    Zhang, Lingling
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 7851 - 7856
  • [6] WEIGHTED INITIAL PROBLEM FOR FRACTIONAL DIFFERENTIAL EQUATION
    Smarda, Zdenek
    XXVII INTERNATIONAL COLLOQUIUM ON THE MANAGEMENT OF EDUCATIONAL PROCESS, 2009, : 148 - 154
  • [7] On the Control Problem for Solution of Stochastic Differential Equation with Additive Fractional Brownian Motion
    Knopov, P. S.
    Derieva, E. N.
    JOURNAL OF AUTOMATION AND INFORMATION SCIENCES, 2010, 42 (07) : 78 - 83
  • [8] Antiperiodic Boundary Value Problem for a Semilinear Differential Equation of Fractional Order
    Petrosyan, G. G.
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2020, 34 : 51 - 66
  • [9] The Neumann problem for the generalized Bagley-Torvik fractional differential equation
    Svatoslav Staněk
    Fractional Calculus and Applied Analysis, 2016, 19 : 907 - 920
  • [10] THE NEUMANN PROBLEM FOR THE GENERALIZED BAGLEY-TORVIK FRACTIONAL DIFFERENTIAL EQUATION
    Stanek, Svatoslav
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (04) : 907 - 920