Delta invariants of projective bundles and projective cones of Fano type

被引:7
作者
Zhang, Kewei [1 ]
Zhou, Chuyu [2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Ecole Polytech Fed Lausanne EPFL, MA C3 615,Stn 8, CH-1015 Lausanne, Switzerland
关键词
KAHLER-EINSTEIN METRICS; GREATEST LOWER BOUNDS; K-STABILITY; RICCI CURVATURE; CONSTRUCTION; EQUATIONS; VOLUME;
D O I
10.1007/s00209-021-02787-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we will give a precise formula to compute delta invariants of projective bundles and projective cones of Fano type.
引用
收藏
页码:179 / 207
页数:29
相关论文
共 44 条
  • [1] Ascher K., 2019, ARXIV190904576
  • [2] A VARIATIONAL APPROACH TO THE YAU-TIAN-DONALDSON CONJECTURE
    Berman, Robert J.
    Boucksom, Ebastien
    Jonsson, Mattias
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 34 (03) : 605 - 652
  • [3] A thermodynamical formalism for Monge-Ampere equations, Moser-Trudinger inequalities and Kahler-Einstein metrics
    Berman, Robert J.
    [J]. ADVANCES IN MATHEMATICS, 2013, 248 : 1254 - 1297
  • [4] Blum H., 2020, ARXIV180809070
  • [5] Blum H., 2020, ARXIV190702408
  • [6] Blum H., 2020, ARXIV190705399
  • [7] Thresholds, valuations, and K-stability
    Blum, Harold
    Jonsson, Mattias
    [J]. ADVANCES IN MATHEMATICS, 2020, 365
  • [8] Uniqueness of K-polystable degenerations of Fano varieties
    Blum, Harold
    Xu, Chenyang
    [J]. ANNALS OF MATHEMATICS, 2019, 190 (02) : 609 - 656
  • [9] Boucksom S., 2018, NONARCHIMEDEAN APPRO
  • [10] Boucksom S, 2017, ANN I FOURIER, V67, P743