Spacetime entanglement entropy in 1+1 dimensions

被引:22
作者
Saravani, Mehdi [1 ,2 ]
Sorkin, Rafael D. [1 ,3 ]
Yazdi, Yasaman K. [1 ,2 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
基金
加拿大自然科学与工程研究理事会;
关键词
entanglement entropy; covariant UV cutoff; field theories in lower dimensions; causal set theory;
D O I
10.1088/0264-9381/31/21/214006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Sorkin (Expressing entropy globally in terms of (4D) field-correlations arXiv:1205.2953) defines an entropy for a Gaussian scalar field phi in an arbitrary region of either a continuous spacetime or a causal set, given only the correlator <phi(x)phi(y)> within the region. The definition is global and independent of any choice of spacelike hypersurface. As a first application, we compute numerically the entanglement entropy in two cases where the asymptotic form is known or suspected from conformal field theory, finding excellent agreement when the required ultraviolet cutoff is implemented as a truncation on spacetime mode sums. We also show how the symmetry of entanglement entropy reflects the fact that RS and SR share the same eigenvalues, with R and S being arbitrary matrices.
引用
收藏
页数:16
相关论文
共 50 条
[31]   Entanglement entropy in causal set theory [J].
Sorkin, Rafael D. ;
Yazdi, Yasaman K. .
CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (07)
[32]   Thermodynamics of the O(3) model in 1+1 dimensions: lattice vs. analytical results [J].
Seel, Elina ;
Smith, Dominik ;
Lottini, Stefano ;
Giacosa, Francesco .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (07)
[33]   Entanglement Entropy of the Spin-1 Condensates at Zero Temperature [J].
Li, Zhibing ;
Liu, Yimin ;
Zheng, Wei ;
Bao, Chengguang .
ENTROPY, 2018, 20 (01)
[34]   Thermodynamics of the O(3) model in 1+1 dimensions: lattice vs. analytical results [J].
Elina Seel ;
Dominik Smith ;
Stefano Lottini ;
Francesco Giacosa .
Journal of High Energy Physics, 2013
[35]   Exact and numerical results on entanglement entropy in (5 + 1)-dimensional CFT [J].
Benjamin R. Safdi .
Journal of High Energy Physics, 2012
[36]   From Maxwell-Chern-Simons theory in AdS3 towards hydrodynamics in 1+1 dimensions [J].
Chang, Han-Chih ;
Fujita, Mitsutoshi ;
Kaminski, Matthias .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (10)
[37]   LOCAL ENTANGLEMENT ENTROPY AT THE MOTT METAL-INSULATOR TRANSITION IN INFINITE DIMENSIONS [J].
Su, Dan-Dan ;
Dai, Xi ;
Tong, Ning-Hua .
MODERN PHYSICS LETTERS B, 2013, 27 (05)
[38]   Exact and numerical results on entanglement entropy in (5+1)-dimensional CFT [J].
Safdi, Benjamin R. .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (12)
[39]   Near extremal black hole entropy as entanglement entropy via AdS2/CFT1 [J].
Azeyanagi, Tatsuo .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (14-15) :2229-2230
[40]   Anyonic entanglement and topological entanglement entropy [J].
Bonderson, Parsa ;
Knapp, Christina ;
Patel, Kaushal .
ANNALS OF PHYSICS, 2017, 385 :399-468