Local Hardy-Littlewood maximal operator

被引:13
作者
Lin, Chin-Cheng [2 ]
Stempak, Krzysztof [1 ,3 ]
机构
[1] Wroclaw Univ Technol, Inst Matemat & Informat, PL-50370 Wroclaw, Poland
[2] Natl Cent Univ, Dept Math, Chungli 320, Taiwan
[3] Politech Opolska, Katedra Matemat & Zastosowan Informat, PL-45271 Opole, Poland
关键词
INEQUALITIES;
D O I
10.1007/s00208-010-0499-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we define and investigate a local Hardy-Littlewood maximal operator in Euclidean spaces. It is proved that this operator satisfies weighted L(p), p > 1, and weighted weak type (1, 1) estimates with weight function w is an element of A(loc)(p), the class of local A(p) weights which is larger than the Muckenhoupt A(p) class. Also, the condition w is an element of A(loc)(p) turns out to be necessary for the weighted weak type (p, p), p >= 1, inequality to hold.
引用
收藏
页码:797 / 813
页数:17
相关论文
共 9 条
[1]   WEIGHTED WEAK TYPE HARDY INEQUALITIES WITH APPLICATIONS TO HILBERT-TRANSFORMS AND MAXIMAL FUNCTIONS [J].
ANDERSEN, KF ;
MUCKENHOUPT, B .
STUDIA MATHEMATICA, 1982, 72 (01) :9-26
[2]   ESTIMATES FOR OPERATOR NORMS ON WEIGHTED SPACES AND REVERSE JENSEN INEQUALITIES [J].
BUCKLEY, SM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 340 (01) :253-272
[3]  
CORDOBA A, 1975, ANN MATH, V102
[4]   MAXIMAL AND SINGULAR INTEGRAL-OPERATORS VIA FOURIER-TRANSFORM ESTIMATES [J].
DUOANDIKOETXEA, J ;
DEFRANCIA, JLR .
INVENTIONES MATHEMATICAE, 1986, 84 (03) :541-561
[5]  
Duoandikoetxea J., 2001, Graduate Studies in Mathematics, P29
[6]   SOME WEIGHTED NORM INEQUALITIES FOR CORDOBA MAXIMAL-FUNCTION [J].
FEFFERMAN, R .
AMERICAN JOURNAL OF MATHEMATICS, 1984, 106 (05) :1261-1264
[7]  
Muckenhoupt B., 1986, MEM AM MATH SOC, V64
[8]  
Nowak A, 2006, TOHOKU MATH J, V58, P277
[9]   PROBLEMS IN HARMONIC-ANALYSIS RELATED TO CURVATURE [J].
STEIN, EM ;
WAINGER, S .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (06) :1239-1295