Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives

被引:77
作者
Dong, Wendy [1 ,2 ,3 ]
Kantor, Boris [1 ,2 ,3 ]
机构
[1] Duke Univ, Med Ctr, Dept Neurobiol, DUMC Box 3209, Durham, NC 27710 USA
[2] Duke Univ, Viral Vector Core, Med Ctr, Durham, NC 27710 USA
[3] Duke Ctr Adv Genom Technol, Durham, NC 27710 USA
来源
VIRUSES-BASEL | 2021年 / 13卷 / 07期
关键词
lentiviral vectors; intergrase-deficient lentiviral vectors; CRISPR; Cas9; systems; base-editing; prime-editing; genome-editing; epigenome-editing; vector mediated gene-to-cell transfer; gene therapy; PROVIDES ACQUIRED-RESISTANCE; VIRUS TYPE-1 INTEGRASE; MURINE LEUKEMIA-VIRUS; HIGHLY EFFICIENT; MOUSE MODEL; TRANSGENE EXPRESSION; GENOMIC DNA; IN-VITRO; CRISPR-CAS9; THERAPY;
D O I
10.3390/v13071288
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
CRISPR/Cas technology has revolutionized the fields of the genome- and epigenome-editing by supplying unparalleled control over genomic sequences and expression. Lentiviral vector (LV) systems are one of the main delivery vehicles for the CRISPR/Cas systems due to (i) its ability to carry bulky and complex transgenes and (ii) sustain robust and long-term expression in a broad range of dividing and non-dividing cells in vitro and in vivo. It is thus reasonable that substantial effort has been allocated towards the development of the improved and optimized LV systems for effective and accurate gene-to-cell transfer of CRISPR/Cas tools. The main effort on that end has been put towards the improvement and optimization of the vector's expression, development of integrase-deficient lentiviral vector (IDLV), aiming to minimize the risk of oncogenicity, toxicity, and pathogenicity, and enhancing manufacturing protocols for clinical applications required large-scale production. In this review, we will devote attention to (i) the basic biology of lentiviruses, and (ii) recent advances in the development of safer and more efficient CRISPR/Cas vector systems towards their use in preclinical and clinical applications. In addition, we will discuss in detail the recent progress in the repurposing of CRISPR/Cas systems related to base-editing and prime-editing applications.
引用
收藏
页数:17
相关论文
共 81 条
[41]   Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage [J].
Komor, Alexis C. ;
Kim, Yongjoo B. ;
Packer, Michael S. ;
Zuris, John A. ;
Liu, David R. .
NATURE, 2016, 533 (7603) :420-+
[42]   Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex [J].
Konermann, Silvana ;
Brigham, Mark D. ;
Trevino, Alexandro E. ;
Joung, Julia ;
Abudayyeh, Omar O. ;
Barcena, Clea ;
Hsu, Patrick D. ;
Habib, Naomi ;
Gootenberg, Jonathan S. ;
Nishimasu, Hiroshi ;
Nureki, Osamu ;
Zhang, Feng .
NATURE, 2015, 517 (7536) :583-U332
[43]   Diversity, classification and evolution of CRISPR-Cas systems [J].
Koonin, Eugene V. ;
Makarova, Kira S. ;
Zhang, Feng .
CURRENT OPINION IN MICROBIOLOGY, 2017, 37 :67-78
[44]   BOTH SUBSTRATE AND TARGET OLIGONUCLEOTIDE SEQUENCES AFFECT INVITRO INTEGRATION MEDIATED BY HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 INTEGRASE PROTEIN PRODUCED IN SACCHAROMYCES-CEREVISIAE [J].
LEAVITT, AD ;
ROSE, RB ;
VARMUS, HE .
JOURNAL OF VIROLOGY, 1992, 66 (04) :2359-2368
[45]   PASSAGE THROUGH MITOSIS IS REQUIRED FOR ONCORETROVIRUSES BUT NOT FOR THE HUMAN-IMMUNODEFICIENCY-VIRUS [J].
LEWIS, PF ;
EMERMAN, M .
JOURNAL OF VIROLOGY, 1994, 68 (01) :510-516
[46]   Treatment of a Mouse Model of ALS by In Vivo Base Editing [J].
Lim, Colin K. W. ;
Gapinske, Michael ;
Brooks, Alexandra K. ;
Woods, Wendy S. ;
Powell, Jackson E. ;
Zeballos, M. Alejandra C. ;
Winter, Jackson ;
Perez-Pinera, Pablo ;
Gaj, Thomas .
MOLECULAR THERAPY, 2020, 28 (04) :1177-1189
[47]   An updated evolutionary classification of CRISPR-Cas systems [J].
Makarova, Kira S. ;
Wolf, Yuri I. ;
Alkhnbashi, Omer S. ;
Costa, Fabrizio ;
Shah, Shiraz A. ;
Saunders, Sita J. ;
Barrangou, Rodolphe ;
Brouns, Stan J. J. ;
Charpentier, Emmanuelle ;
Haft, Daniel H. ;
Horvath, Philippe ;
Moineau, Sylvain ;
Mojica, Francisco J. M. ;
Terns, Rebecca M. ;
Terns, Michael P. ;
White, Malcolm F. ;
Yakunin, Alexander F. ;
Garrett, Roger A. ;
van der Oost, John ;
Backofen, Rolf ;
Koonin, Eugene V. .
NATURE REVIEWS MICROBIOLOGY, 2015, 13 (11) :722-736
[48]  
Makarova Kira S, 2015, Methods Mol Biol, V1311, P47, DOI 10.1007/978-1-4939-2687-9_4
[49]   Development of a self-inactivating lentivirus vector [J].
Miyoshi, H ;
Blömer, U ;
Takahashi, M ;
Gage, FH ;
Verma, IM .
JOURNAL OF VIROLOGY, 1998, 72 (10) :8150-8157
[50]   Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration [J].
Montini, Eugenio ;
Cesana, Daniela ;
Schmidt, Manfred ;
Sanvito, Francesca ;
Ponzoni, Maurilio ;
Bartholomae, Cynthia ;
Sergi, Lucia Sergi ;
Benedicenti, Fabrizio ;
Ambrosi, Alessandro ;
Di Serio, Clelia ;
Doglioni, Claudio ;
von Kalle, Christof ;
Naldini, Luigi .
NATURE BIOTECHNOLOGY, 2006, 24 (06) :687-696