Second order gyrokinetic theory for particle-in-cell codes

被引:34
|
作者
Tronko, Natalia [1 ]
Bottino, Alberto [1 ]
Sonnendruecker, Eric [1 ]
机构
[1] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
关键词
EQUATIONS; SIMULATION;
D O I
10.1063/1.4960039
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The main idea of the gyrokinetic dynamical reduction consists in a systematical removal of the fast scale motion (the gyromotion) from the dynamics of the plasma, resulting in a considerable simplification and a significant gain of computational time. The gyrokinetic Maxwell-Vlasov equations are nowadays implemented in for modeling (both laboratory and astrophysical) strongly magnetized plasmas. Different versions of the reduced set of equations exist, depending on the construction of the gyrokinetic reduction procedure and the approximations performed in the derivation. The purpose of this article is to explicitly show the connection between the general second order gyrokinetic Maxwell-Vlasov system issued from the modern gyrokinetic theory and the model currently implemented in the global electromagnetic Particle-in-Cell code ORB5. Necessary information about the modern gyrokinetic formalism is given together with the consistent derivation of the gyrokinetic Maxwell-Vlasov equations from first principles. The variational formulation of the dynamics is used to obtain the corresponding energy conservation law, which in turn is used for the verification of energy conservation diagnostics currently implemented in ORB5. This work fits within the context of the code verification project VeriGyro currently run at IPP Max-Planck Institut in collaboration with others European institutions.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Hierarchy of second order gyrokinetic Hamiltonian models for particle-in-cell codes
    Tronko, N.
    Bottino, A.
    Chandre, C.
    Sonnendruecker, E.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (06)
  • [2] Nonequilibrium gyrokinetic fluctuation theory and sampling noise in gyrokinetic particle-in-cell simulations
    Krommes, John A.
    PHYSICS OF PLASMAS, 2007, 14 (09)
  • [3] Numerics and computation in gyrokinetic simulations of electromagnetic turbulence with global particle-in-cell codes
    Mishchenko, A.
    Biancalani, A.
    Bottino, A.
    Hayward-Schneider, T.
    Lauber, Ph
    Lanti, E.
    Villard, L.
    Kleiber, R.
    Koenies, A.
    Borchardt, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (08)
  • [4] Spatial core-edge coupling of the particle-in-cell gyrokinetic codes GEM and XGC
    Cheng, Junyi
    Dominski, Julien
    Chen, Yang
    Chen, Haotian
    Merlo, Gabriele
    Ku, Seung-Hoe
    Hager, Robert
    Chang, Choong-Seock
    Suchyta, Eric
    D'Azevedo, Eduardo
    Ethier, Stephane
    Sreepathi, Sarat
    Klasky, Scott
    Jenko, Frank
    Bhattacharjee, Amitava
    Parker, Scott
    PHYSICS OF PLASMAS, 2020, 27 (12)
  • [5] Optimized loading for particle-in-cell gyrokinetic simulations
    Lewandowski, JLV
    CANADIAN JOURNAL OF PHYSICS, 2004, 82 (08) : 609 - 622
  • [6] Second-order nonlinear gyrokinetic theory: from the particle to the gyrocentre
    Tronko, Natalia
    Chandre, Cristel
    JOURNAL OF PLASMA PHYSICS, 2018, 84 (03)
  • [7] Electromagnetic high frequency gyrokinetic particle-in-cell simulation
    Kolesnikov, R. A.
    Lee, W. W.
    Qin, H.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2008, 4 (03) : 575 - 591
  • [8] Particle-in-cell δf gyrokinetic simulations of the microtearing mode
    Chowdhury, J.
    Chen, Yang
    Wan, Weigang
    Parker, Scott E.
    Guttenfelder, W.
    Canik, J. M.
    PHYSICS OF PLASMAS, 2016, 23 (01)
  • [9] Compton scattering in particle-in-cell codes
    Del Gaudio, F.
    Grismayer, T.
    Fonseca, R. A.
    Silva, L. O.
    JOURNAL OF PLASMA PHYSICS, 2020, 86 (05)
  • [10] Quasisteady and steady states in global gyrokinetic particle-in-cell simulations
    Jolliet, S.
    McMillan, B. F.
    Vernay, T.
    Villard, L.
    Bottino, A.
    Angelino, P.
    PHYSICS OF PLASMAS, 2009, 16 (05)