This work presents a new acoustic MEMS resonator technology, dubbed Aluminum Nitride (AlN) Combined Overtone Resonator (COR), capable of addressing the filter requirements for the 5G high frequency bands in the 6-40GHz range. The COR exploits the multimodal excitation of two higher-order Lamb waves (2nd and 3rd order Asymmetrical Lamb Waves) in a suspended thin-film AlN plate to transduce a 2-dimensional vibration mode with high electromechanical coupling coefficient k2t (up to 1.9%) and quality factor Q > 1100 at twice the frequency of a fundamental thickness-extensional mode in the same structure. Analytical and finite-element method (FEM) models are developed to describe the working principle of the COR technology and predict the achievable k2t, Q and lithographic frequency tunability. An 8.8 GHz COR prototype was fabricated showing a high k2t similar to 0.3% (using a simple top-electrode-only configuration with a 2-mask process) and a groundbreaking Q similar to 1100 which is the highest ever achieved among piezoelectric resonators above 6 GHz. The f - Q product similar to 1 x 10(13) is the highest among all demonstrated piezoelectric resonators with metallic coverage >50%. Additionally, the capability of the COR technology to deliver contiguous filters with bandwidths between 355 and 592 MHz (aggregated BW >2GHz) in the mmWave spectrum, with relaxed lithographic requirements, is demonstrated by FEM. [2019-0229]