Spectral Distribution of Random Matrices From Binary Linear Block Codes

被引:14
作者
Babadi, Behtash [1 ]
Tarokh, Vahid [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
Asymptotic spectral distribution; coding theory; Marchenko-Pastur law; random matrix theory; randomness of sequences;
D O I
10.1109/TIT.2011.2137330
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let C be a binary linear block code of length n, dimension k and minimum Hamming distance d over GF(2)(n). Let d(perpendicular to) denote the minimum Hamming distance of the dual code of C over GF(2)(n). Let epsilon : GF(2)(n) bar right arrow {-1, 1}(n) be the component-wise mapping epsilon(v(i)):=(-1)(vi), for v = (v(1), v(2), ..., v(n)) is an element of GF(2)(n). Finally, for p < n, let Phi(C) be a p x n random matrix whose rows are obtained by mapping a uniformly drawn set of size p of the codewords of C under epsilon. It is shown that for d(perpendicular to) large enough and y:=p/n is an element of (0, 1) fixed, as n -> infinity the empirical spectral distribution of the Gram matrix of 1/root n Phi(C) resembles that of a random i.i.d. Rademacher matrix (i.e., the Marchenko-Pastur distribution). Moreover, an explicit asymptotic uniform bound on the distance of the empirical spectral distribution of the Gram matrix of 1/root n Phi(C) to the Marchenko-Pastur distribution as a function of y and d(perpendicular to) is presented.
引用
收藏
页码:3955 / 3962
页数:8
相关论文
共 13 条
[1]  
Anderson G., 2009, INTRO RANDOM MATRICE, V1st
[2]  
[Anonymous], 1991, INTRO PROBABILITY TH
[3]   Chirp sensing codes: Deterministic compressed sensing measurements for fast recovery [J].
Applebaum, Lorne ;
Howard, Stephen D. ;
Searle, Stephen ;
Calderbank, Robert .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 26 (02) :283-290
[4]  
BABADI B, 2011, CAN WORKSH INF THEOR
[5]   Construction of a Large Class of Deterministic Sensing Matrices That Satisfy a Statistical Isometry Property [J].
Calderbank, Robert ;
Howard, Stephen ;
Jafarpour, Sina .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2010, 4 (02) :358-374
[6]  
MacWilliams F.J., 1988, THEORY ERROR CORRECT
[7]  
Marcenko V. A., 1967, Matematicheskii Sbornik, V1, P457, DOI [10.1070/SM1967v001n04ABEH001994, DOI 10.1070/SM1967V001N04ABEH001994]
[8]  
Rudin W., 1987, REAL COMPLEX ANAL
[9]   Distributions of singular values for some random matrices [J].
Sengupta, AM ;
Mitra, PP .
PHYSICAL REVIEW E, 1999, 60 (03) :3389-3392
[10]  
Sidel'nikov V.M., 1971, PROBL INFORM TRANSM+, V7, P11