Core-shell structuredCsPbBr3/Sn-TiO2 nanocrystals for visible-light-driven photocatalyst in aqueous solution

被引:9
作者
Li, Hongyuan [1 ]
Zhang, Bowen [1 ]
Zhang, Bo [1 ]
Bala, Hari [1 ]
An, Xiangli [1 ]
Sha, Nian [1 ]
Sun, Zeyu [1 ]
Zhang, Wei [1 ]
Zhang, Zhanying [1 ]
机构
[1] Henan Polvtechn Univ, Cultivating Base Key Lab Environm Friendly Inorgan, Sch Mat Sci & Engn, Jiaozuo 454000, Peoples R China
基金
中国国家自然科学基金;
关键词
Core-shell structuredCsPbBr3; Sn-TiO2; nanocrystals; Photocatalyst; Visible light; Stability; HALIDE PEROVSKITES CSPBX3; COLLOIDAL NANOCRYSTALS; ANION-EXCHANGE; QUANTUM DOTS; GROWTH; BR; CL; NETWORKS;
D O I
10.1016/j.apsusc.2022.153937
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All-inorganic perovskite materials have attracted much attention in the field of photocatalysts due to their unique photoelectric properties.However, the inherent poor stability of perovskite quantum dots significantlyhinders their practical applications. Herein, to settle the instabilities of inorganic perovskite materials, Sn-TiO2 coated CsPbBr3 quantum dots named CsPbBr3/Sn-TiO2, are fabricated via resaturated recrystallization, sol-gel coating and solvothermal crystallization.The XRD results demonstrated that the core-shell structure of CsPbBr3/Sn-TiO2 nanocrystals was successfully synthesized.Moreover, excellent dispersion is verified for CsPbBr3/Sn-TiO3 nano -crystals with a core-shell structure by TEM. The particle size of CsPbBr3/Sn-TiO2 nanocrystals is 15-30 nm, where the core size for CsPbBr3 quantum dots is 4-8 nm, and the Sn-TiO2 shell thickness is 2-8 nm.The pho-tocatalytic activity of nanocomposites was studied by the photodegradation of RhB aqueous solution under the irradiation of 100 mWcm(-2) air mass 1.5 global AM1.5G sunlight. Compared with traditional photocatalyst P25, the core-shell structured CsPbBr3/Sn-TiO2 nanocrystals exhibited better photocatalytic performance, with a degradation efficiency of 96.6% and a degradation rate constant of 10.68 x 10(-2) min(-1) in 30 min of catalytic time, which was five times higher than that of P25.The core-shell structured CsPbBr3/Sn-TiO2 nanocrystals have long-term stability in water system and have potential practical application value in the field of environmental governance.
引用
收藏
页数:10
相关论文
共 41 条
[1]   Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals [J].
Akkerman, Quinten A. ;
Raino, Gabriele ;
Kovalenko, Maksym V. ;
Manna, Liberato .
NATURE MATERIALS, 2018, 17 (05) :394-405
[2]   Role of the chemical substitution on the structural and luminescence properties of the mixed halide perovskite thin MAPbI3-xBrx (0 ≤ x ≤ 1) films [J].
Atourki, Lahoucine ;
Vega, Erika ;
Mari, Bernabe ;
Mollar, Miguel ;
Ahsaine, Hassan Ait ;
Bouabid, Khalid ;
Ihlal, Ahmed .
APPLIED SURFACE SCIENCE, 2016, 371 :112-117
[3]   Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications [J].
Bai, Sai ;
Yuan, Zhongcheng ;
Gao, Feng .
JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (18) :3898-3904
[4]   Vapor-Phase Epitaxial Growth of Aligned Nanowire Networks of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I) [J].
Chen, Jie ;
Fu, Yongping ;
Samad, Leith ;
Dang, Lianna ;
Zhao, Yuzhou ;
Shen, Shaohua ;
Guo, Liejin ;
Jin, Song .
NANO LETTERS, 2017, 17 (01) :460-466
[5]   Solvothermal Synthesis of High-Quality All-Inorganic Cesium Lead Halide Perovskite Nanocrystals: From Nanocube to Ultrathin Nanowire [J].
Chen, Min ;
Zou, Yatao ;
Wu, Linzhong ;
Pan, Qi ;
Yang, Di ;
Hu, Huicheng ;
Tan, Yeshu ;
Zhong, Qixuan ;
Xu, Yong ;
Liu, Haiyu ;
Sun, Baoquan ;
Zhang, Qiao .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (23)
[6]   Anion Exchange in Cesium Lead Halide Perovskite Nanocrystals and Thin Films Using Trimethylsilyl Halide Reagents [J].
Creutz, Sidney E. ;
Crites, Evan N. ;
De Siena, Michael C. ;
Gamelin, Daniel R. .
CHEMISTRY OF MATERIALS, 2018, 30 (15) :4887-4891
[7]   State of the Art and Prospects for Halide Perovskite Nanocrystals [J].
Dey, Amrita ;
Ye, Junzhi ;
De, Apurba ;
Debroye, Elke ;
Ha, Seung Kyun ;
Bladt, Eva ;
Kshirsagar, Anuraj S. ;
Wang, Ziyu ;
Yin, Jun ;
Wang, Yue ;
Quan, Li Na ;
Yan, Fei ;
Gao, Mengyu ;
Li, Xiaoming ;
Shamsi, Javad ;
Debnath, Tushar ;
Cao, Muhan ;
Scheel, Manuel A. ;
Kumar, Sudhir ;
Steele, Julian A. ;
Gerhard, Marina ;
Chouhan, Lata ;
Xu, Ke ;
Wu, Xian-gang ;
Li, Yanxiu ;
Zhang, Yangning ;
Dutta, Anirban ;
Han, Chuang ;
Vincon, Ilka ;
Rogach, Andrey L. ;
Nag, Angshuman ;
Samanta, Anunay ;
Korgel, Brian A. ;
Shih, Chih-Jen ;
Gamelin, Daniel R. ;
Son, Dong Hee ;
Zeng, Haibo ;
Zhong, Haizheng ;
Sun, Handong ;
Demir, Hilmi Volkan ;
Scheblykin, Ivan G. ;
Mora-Sero, Ivan ;
Stolarczyk, Jacek K. ;
Zhang, Jin Z. ;
Feldmann, Jochen ;
Hofkens, Johan ;
Luther, Joseph M. ;
Perez-Prieto, Julia ;
Li, Liang ;
Manna, Liberato .
ACS NANO, 2021, 15 (07) :10775-10981
[8]   Harnessing Defect-Tolerance at the Nanoscale: Highly Luminescent Lead Halide Perovskite Nanocrystals in Mesoporous Silica Matrixes [J].
Dirin, Dmitry N. ;
Protesescu, Loredana ;
Trummer, David ;
Kochetygov, Ilia V. ;
Yakunin, Sergii ;
Krumeich, Frank ;
Stadie, Nicholas P. ;
Kovalenko, Maksym V. .
NANO LETTERS, 2016, 16 (09) :5866-5874
[9]   Visible light responsive CsPbBr3/TiO2 photocatalyst with long-term stability in aqueous solution [J].
Guo, Zu-an ;
Zhang, Bowen ;
Li, Hongyuan ;
Ming, Huangliang ;
Bala, Hari ;
Yao, Shujuan ;
Zhang, Jingyi ;
Fu, Wuyou ;
Cao, Jianliang ;
Sun, Guang ;
Zhang, Zhanying .
MATERIALS LETTERS, 2020, 274
[10]   Solvent-Assisted Self-Assembly of Gold Nanorods into Hierarchically Organized Plasmonic Mesostructures [J].
Hanske, Christoph ;
Hill, Eric H. ;
Vila-Liarte, David ;
Gonzalez-Rubio, Guillermo ;
Matricardi, Cristiano ;
Mihi, Agustin ;
Liz-Marzan, Luis M. .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (12) :11763-11771