Inhibitory and synergistic effects on thermal behaviour and char characteristics during the co-pyrolysis of biomass and single-use plastics

被引:30
作者
Vanapalli, Kumar Raja [1 ]
Bhattacharya, Jayanta [1 ,2 ]
Samal, Biswajit [1 ]
Chandra, Subhash [1 ,4 ]
Medha, Isha [2 ]
Dubey, Brajesh K. [1 ,3 ]
机构
[1] Indian Inst Technol, Sch Environm Sci & Engn, Kharagpur 721302, W Bengal, India
[2] Indian Inst Technol, Dept Min Engn, Kharagpur 721302, W Bengal, India
[3] Indian Inst Technol, Dept Civil Engn, Kharagpur 721302, W Bengal, India
[4] Vignans Inst Informat Technol, Dept Civil Engn, Visakhapatnam 530049, Andhra Pradesh, India
关键词
Co-pyrolysis; Biomass; Single-use plastics; Kinetics; Thermogravimetric analysis; Synergy; THERMOGRAVIMETRIC ANALYSIS; WASTE PLASTICS; POLYETHYLENE; KINETICS; DEGRADATION; MIXTURES; BLENDS; SHELL; FUEL; PARAMETERS;
D O I
10.1016/j.energy.2021.121369
中图分类号
O414.1 [热力学];
学科分类号
摘要
The co-pyrolytic behaviour of single-use plastics (Polystyrene, Low-density polyethylene) and Eucalyptus biomass was investigated at variable temperatures (300, 400, 500, and 600 degrees C) and the effects of their interactions on the characteristics of solid chars were also studied. The variation in thermal profiles of 'Delta Mass loss%' showed the inhibitory and synergistic effects of plastics on the biomass degradation, resulting in higher and lower yields of char composite, respectively. The blend containing polystyrene exhibited the highest synergistic (Delta M = 15.1) and inhibitory (Delta M = -4) effects. The thermal kinetics of blends also indicated the presence of both the effects through relatively higher and lower apparent activation energies compared to the calculated, before and during the degradation of plastics. Despite low fixed carbon contents and high volatile matter, polymer-coated char composites had higher fuel value indices (36-136%), energy yields (1-26%) and calorific values (15-21%), relative to biochar. After the complete degradation of plastics, char composites exhibited higher values of electrical conductivity (2-40%), surface area (15-64%), and cation exchange capacity (5-19%). These properties advocate the flexibility of char composites' applicability as solid fuel or soil amender depending on the optimized conditions of co-pyrolysis. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal
    Wu, Zhiqiang
    Wang, Shuzhong
    Zhao, Jun
    Chen, Lin
    Meng, Haiyu
    BIORESOURCE TECHNOLOGY, 2014, 169 : 220 - 228
  • [42] Co-pyrolysis of industrial sludge and rice straw: Synergistic effects of biomass on reaction characteristics, biochar properties and heavy metals solidification
    Peng, Bo
    Liu, Qingyu
    Li, Xiaodi
    Zhou, Zhixiong
    Wu, Changshuo
    Zhang, Huiyan
    FUEL PROCESSING TECHNOLOGY, 2022, 230
  • [43] Synergistic effects during co-pyrolysis and co-gasification of polypropylene and polystyrene
    Li, Jinhu
    Ye, Xinhao
    Burra, Kiran G.
    Lu, Wei
    Wang, Zhiwei
    Liu, Xuan
    Gupta, Ashwani K.
    APPLIED ENERGY, 2023, 336
  • [44] Synergistic effects of catalytic co-pyrolysis of macroalgae with waste plastics
    Xu, Shannan
    Cao, Bin
    Uzoejinwa, Benjamin Bernard
    Odey, Emmanuel Alepu
    Wang, Shuang
    Shang, Hao
    Li, Chunhou
    Hu, Yamin
    Wang, Qian
    Nwakaire, Joel N.
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2020, 137 : 34 - 48
  • [45] Synergistic effects of co-pyrolysis of macroalgae and polyvinyl chloride on bio-oil/bio-char properties and transferring regularity of chlorine
    Cao, Bin
    Sun, Yangkai
    Guo, Junjun
    Wang, Shuang
    Yuan, Jianping
    Esakkimuthu, Sivakumar
    Uzoejinwa, Benjamin Bernard
    Yuan, Chuan
    Abomohra, Abd El-Fatah
    Qian, Lili
    Liu, Lu
    Li, Bin
    He, Zhixia
    Wang, Qian
    FUEL, 2019, 246 : 319 - 329
  • [46] Single-use LDPE-Eucalyptus biomass char composite produced from co-pyrolysis has the properties to improve the soil quality
    Vanapalli, Kumar Raja
    Bhattacharya, Jayanta
    Samal, Biswajit
    Chandra, Subhash
    Medha, Isha
    Dubey, Brajesh K.
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2021, 149 : 185 - 198
  • [47] Structure characteristics and gasification reactivity of co-pyrolysis char from lignocellulosic biomass and waste plastics: Effect of polyethylene
    Kai, Xingping
    Wang, Lesheng
    Yang, Tianhua
    Zhang, Tao
    Li, Bingshuo
    Liu, Zhaowei
    Yan, Wenwen
    Li, Rundong
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 279
  • [48] Co-pyrolysis behavior of microalgae biomass and low-quality coal: Products distributions, char-surface morphology, and synergistic effects
    Wu, Zhiqiang
    Yang, Wangcai
    Li, Yaowu
    Yang, Bolun
    BIORESOURCE TECHNOLOGY, 2018, 255 : 238 - 245
  • [49] Synergistic effects during co-pyrolysis and liquefaction of biomass and lignite under syngas
    Zhenxing Guo
    Zongqing Bai
    Jin Bai
    Zhiqing Wang
    Wen Li
    Journal of Thermal Analysis and Calorimetry, 2015, 119 : 2133 - 2140
  • [50] Investigation on Synergistic Effects and Char Morphology during Co-pyrolysis of Poly(vinyl chloride) Blended with Different Rank Coals from Northern China
    Meng, Haiyu
    Wang, Shuzhong
    Chen, Lin
    Wu, Zhiqiang
    Zhao, Jun
    ENERGY & FUELS, 2015, 29 (10) : 6645 - 6655