Inhibitory and synergistic effects on thermal behaviour and char characteristics during the co-pyrolysis of biomass and single-use plastics

被引:30
作者
Vanapalli, Kumar Raja [1 ]
Bhattacharya, Jayanta [1 ,2 ]
Samal, Biswajit [1 ]
Chandra, Subhash [1 ,4 ]
Medha, Isha [2 ]
Dubey, Brajesh K. [1 ,3 ]
机构
[1] Indian Inst Technol, Sch Environm Sci & Engn, Kharagpur 721302, W Bengal, India
[2] Indian Inst Technol, Dept Min Engn, Kharagpur 721302, W Bengal, India
[3] Indian Inst Technol, Dept Civil Engn, Kharagpur 721302, W Bengal, India
[4] Vignans Inst Informat Technol, Dept Civil Engn, Visakhapatnam 530049, Andhra Pradesh, India
关键词
Co-pyrolysis; Biomass; Single-use plastics; Kinetics; Thermogravimetric analysis; Synergy; THERMOGRAVIMETRIC ANALYSIS; WASTE PLASTICS; POLYETHYLENE; KINETICS; DEGRADATION; MIXTURES; BLENDS; SHELL; FUEL; PARAMETERS;
D O I
10.1016/j.energy.2021.121369
中图分类号
O414.1 [热力学];
学科分类号
摘要
The co-pyrolytic behaviour of single-use plastics (Polystyrene, Low-density polyethylene) and Eucalyptus biomass was investigated at variable temperatures (300, 400, 500, and 600 degrees C) and the effects of their interactions on the characteristics of solid chars were also studied. The variation in thermal profiles of 'Delta Mass loss%' showed the inhibitory and synergistic effects of plastics on the biomass degradation, resulting in higher and lower yields of char composite, respectively. The blend containing polystyrene exhibited the highest synergistic (Delta M = 15.1) and inhibitory (Delta M = -4) effects. The thermal kinetics of blends also indicated the presence of both the effects through relatively higher and lower apparent activation energies compared to the calculated, before and during the degradation of plastics. Despite low fixed carbon contents and high volatile matter, polymer-coated char composites had higher fuel value indices (36-136%), energy yields (1-26%) and calorific values (15-21%), relative to biochar. After the complete degradation of plastics, char composites exhibited higher values of electrical conductivity (2-40%), surface area (15-64%), and cation exchange capacity (5-19%). These properties advocate the flexibility of char composites' applicability as solid fuel or soil amender depending on the optimized conditions of co-pyrolysis. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Thermal behaviour of coal/biomass blends during co-pyrolysis
    Vuthaluru, HB
    FUEL PROCESSING TECHNOLOGY, 2004, 85 (2-3) : 141 - 155
  • [32] Co-pyrolysis re-use of sludge and biomass waste: Development, kinetics, synergistic mechanism and industrialization
    Ma, Mingyan
    Xu, Donghai
    Zhi, Youwei
    Yang, Wanpeng
    Duan, Peigao
    Wu, Zhiqiang
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2022, 168
  • [33] Review on synergistic effects during co-pyrolysis of biomass and plastic waste: Significance of operating conditions and interaction mechanism
    Esso, Samy Berthold Engamba
    Zhe Xiong
    Chaiwat, Weerawut
    Kamara, Melvina Fudia
    Xu Longfei
    Jun Xu
    Ebako, Joseph
    Long Jiang
    Sheng Su
    Song Hu
    Yi Wang
    Jun Xiang
    BIOMASS & BIOENERGY, 2022, 159
  • [34] Effects of volatiles and active AAEMs interaction with char on char characteristics during co-pyrolysis
    Jiao, Zixin
    Qiu, Penghua
    Chen, Xiye
    Liu, Li
    Zhang, Linyao
    Xing, Chang
    RENEWABLE ENERGY, 2023, 208 : 618 - 626
  • [35] Thermal behavior and the evolution of char structure during co-pyrolysis of platanus wood blends with different rank coals from northern China
    Meng, Haiyu
    Wang, Shuzhong
    Chen, Lin
    Wu, Zhiqiang
    Zhao, Jun
    FUEL, 2015, 158 : 602 - 611
  • [36] Enhancement of liquid/gas production during co-pyrolysis of vacuum residue and plastics due to synergistic interactions
    Kusumi, Ryo
    Kusumawati, Miranti Budi
    Borjigin, Siqingaowa
    Kumagai, Shogo
    Yoshida, Akihiro
    Nakatsuka, Yasuo
    Takasawa, Ryuichi
    Toyooka, Yoshiyuki
    Yoshioka, Toshiaki
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [37] Mineral matter interactions during co-pyrolysis of coal and biomass and their impact on intrinsic char co-gasification reactivity
    Ellis, Naoko
    Masnadi, Mohammad S.
    Roberts, Daniel G.
    Kochanek, Mark A.
    Ilyushechkin, Alexander Y.
    CHEMICAL ENGINEERING JOURNAL, 2015, 279 : 402 - 408
  • [38] Machine learning-assisted prediction of gas production during co-pyrolysis of biomass and waste plastics
    Bu, Quan
    Bai, Jianmei
    Wang, Bufei
    Dai, Leilei
    Long, Hairong
    WASTE MANAGEMENT, 2025, 200
  • [39] Optimization of influencing factors during co-pyrolysis of biomass and plastics with focus on monocyclic aromatic hydrocarbons content
    Wu, Mengge
    Wang, Zhiwei
    Chen, Gaofeng
    Zhang, Mengju
    Xin, Xiaofei
    Zhu, Huina
    Wang, Qun
    Du, Zhimin
    Chen, Yan
    Guo, Shuaihua
    Lei, Tingzhou
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2023, 176
  • [40] CHARACTERISTICS AND SYNERGISTIC EFFECTS OF CO-PYROLYSIS OF YINING COAL AND POPLAR SAWDUST
    Zhu, Shenghua
    Bai, Yonghui
    Yan, Lunjing
    Hao, Qiaoling
    Li, Fan
    CHEMICAL INDUSTRY & CHEMICAL ENGINEERING QUARTERLY, 2016, 22 (01) : 1 - 8