Nanoporous hard carbon anodes for improved electrochemical performance in sodium ion batteries

被引:106
|
作者
Prabakar, S. J. Richard [1 ]
Jeong, Jaehyang [1 ]
Pyo, Myoungho [1 ]
机构
[1] Sunchon Natl Univ, Dept Printed Elect Engn, Sunchon 540742, Chonnam, South Korea
基金
新加坡国家研究基金会;
关键词
Hard carbon; Nanopore; Anode; Sodium ion batteries; RATE CAPABILITY; GRAPHENE OXIDE; INSERTION; LITHIUM; NA; CAPACITY; ELECTRODE; INTERCALATION; STABILITY; IMPEDANCE;
D O I
10.1016/j.electacta.2015.02.086
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The porosity and morphology of sucrose-based hard carbon (SHC) was regulated by varying the amount of bicarbonate salts added during a simple two-stage sintering process. During the first-stage thermal treatment of sugar at 200 degrees C, CO2 liberated from bicarbonate contributed to the pulverization of particles and to the formation of submicron-sized pores. Na2CO3 entrapped in a precursor matrix also released CO2 during the second-stage sintering at 850 degrees C, producing nanometric pores (ca. 10 nm in diameter). The excessively high content of bicarbonates, however, resulted in paper-thin graphitic layers with no submicron-sized pores. These dual roles of bicarbonates produced nanoporous SHC (NSHC) with the submicron-to-nano-sized pores and the largest surface area that was possible for a specific bicarbonate concentration. The optimal nanoporosity of NSHC lent itself to a sharp increase in reversible capacity. Reversible capacity of 324 and 289 mA h g(-1) were obtained for the first and 100th cycles at 20 mA g(-1), in contrast to 251 and 213 mA h g(-1), respectively, for SHC. The rate capability of NSHC also was enhanced due to a substantial decrease in the charge transfer resistance and a 5-fold increase in the Na+ diffusion coefficient. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:23 / 31
页数:9
相关论文
共 50 条
  • [1] Nano Hard Carbon Anodes for Sodium-Ion Batteries
    Kim, Dae-Yeong
    Kim, Dong-Hyun
    Kim, Soo-Hyun
    Lee, Eun-Kyung
    Park, Sang-Kyun
    Lee, Ji-Woong
    Yun, Yong-Sup
    Choi, Si-Young
    Kang, Jun
    NANOMATERIALS, 2019, 9 (05)
  • [2] Improved electrochemical performance of tin-sulfide anodes for sodium-ion batteries
    Lu, Ying Ching
    Ma, Chuze
    Alvarado, Judith
    Dimov, Nikolay
    Meng, Ying Shirley
    Okada, Shigeto
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (33) : 16971 - 16977
  • [3] Synthesis strategies of hard carbon anodes for sodium-ion batteries
    Yin, Jian
    Zhang, Ye Shui
    Liang, Hanfeng
    Zhang, Wenli
    Zhu, Yunpei
    MATERIALS REPORTS: ENERGY, 2024, 4 (02):
  • [4] Recent Progress in Hard Carbon Anodes for Sodium-Ion Batteries
    Wang, Jiarui
    Xi, Lei
    Peng, Chenxi
    Song, Xin
    Wan, Xuanhong
    Sun, Luyi
    Liu, Meinan
    Liu, Jun
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (08)
  • [5] Ultrafast synthesis of hard carbon anodes for sodium-ion batteries
    Zhen, Yichao
    Chen, Yang
    Li, Feng
    Guo, Zhenyu
    Hong, Zhensheng
    Titirici, Maria-Magdalena
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (42)
  • [6] A review of hard carbon anodes for rechargeable sodium-ion batteries
    Mu, Bao-yi
    Chi, Chun-lei
    Yang, Xin-hou
    Huangfu, Chao
    Qi, Bin
    Wang, Guan-wen
    Li, Zhi-yuan
    Song, Lei
    Wei, Tong
    Fan, Zhuang-jun
    NEW CARBON MATERIALS, 2024, 39 (05) : 796 - 823
  • [7] A Bifuctional Presodiation Reagent for Hard Carbon Anodes Enhancing Performance of Sodium-Ion Batteries
    Gao, Xiaoyu
    Sun, Yukun
    He, Bowen
    Nuli, Yanna
    Wang, Jiulin
    Yang, Jun
    ACS ENERGY LETTERS, 2024, 9 (03) : 1141 - 1147
  • [8] Electrochemical performance of fulvic acid-based electrospun hard carbon nanofibers as promising anodes for sodium-ion batteries
    Zhao, Pin-Yi
    Zhang, Jie
    Li, Qi
    Wang, Cheng-Yang
    JOURNAL OF POWER SOURCES, 2016, 334 : 170 - 178
  • [9] Correlation of Structure and Performance of Hard Carbons as Anodes for Sodium Ion Batteries
    Gomez-Martin, Aurora
    Martinez-Fernandez, Julian
    Ruttert, Mirco
    Winter, Martin
    Placke, Tobias
    Ramirez-Rico, Joaquin
    CHEMISTRY OF MATERIALS, 2019, 31 (18) : 7288 - 7299
  • [10] Hard carbon spheres interconnected by carbon nanotubes as high-performance anodes for sodium-ion batteries
    Suo, Liyao
    Zhu, Jiahao
    Shen, Xueyang
    Wang, Yizhou
    Han, Xiao
    Chen, Zhongqiang
    Li, Yi
    Liu, Yurong
    Wang, Dan
    Ma, Yanwen
    CARBON, 2019, 151 : 1 - 9