Nanoporous hard carbon anodes for improved electrochemical performance in sodium ion batteries

被引:108
作者
Prabakar, S. J. Richard [1 ]
Jeong, Jaehyang [1 ]
Pyo, Myoungho [1 ]
机构
[1] Sunchon Natl Univ, Dept Printed Elect Engn, Sunchon 540742, Chonnam, South Korea
基金
新加坡国家研究基金会;
关键词
Hard carbon; Nanopore; Anode; Sodium ion batteries; RATE CAPABILITY; GRAPHENE OXIDE; INSERTION; LITHIUM; NA; CAPACITY; ELECTRODE; INTERCALATION; STABILITY; IMPEDANCE;
D O I
10.1016/j.electacta.2015.02.086
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The porosity and morphology of sucrose-based hard carbon (SHC) was regulated by varying the amount of bicarbonate salts added during a simple two-stage sintering process. During the first-stage thermal treatment of sugar at 200 degrees C, CO2 liberated from bicarbonate contributed to the pulverization of particles and to the formation of submicron-sized pores. Na2CO3 entrapped in a precursor matrix also released CO2 during the second-stage sintering at 850 degrees C, producing nanometric pores (ca. 10 nm in diameter). The excessively high content of bicarbonates, however, resulted in paper-thin graphitic layers with no submicron-sized pores. These dual roles of bicarbonates produced nanoporous SHC (NSHC) with the submicron-to-nano-sized pores and the largest surface area that was possible for a specific bicarbonate concentration. The optimal nanoporosity of NSHC lent itself to a sharp increase in reversible capacity. Reversible capacity of 324 and 289 mA h g(-1) were obtained for the first and 100th cycles at 20 mA g(-1), in contrast to 251 and 213 mA h g(-1), respectively, for SHC. The rate capability of NSHC also was enhanced due to a substantial decrease in the charge transfer resistance and a 5-fold increase in the Na+ diffusion coefficient. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:23 / 31
页数:9
相关论文
共 31 条
[1]   A TRANSMISSION-LINE MODEL FOR MODIFIED ELECTRODES AND THIN-LAYER CELLS [J].
ALBERY, WJ ;
ELLIOTT, CM ;
MOUNT, AR .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1990, 288 (1-2) :15-34
[2]   On the correlation among surface chemistry, 3D structure, morphology, electrochemical and impedance behavior of various lithiated carbon electrodes [J].
Aurbach, D ;
Gnanaraj, JS ;
Levi, MD ;
Levi, EA ;
Fischer, JE ;
Claye, A .
JOURNAL OF POWER SOURCES, 2001, 97-8 :92-96
[3]   Hard Carbon and Carbon Nanotube Composites for the Improvement of Low-Voltage Performance in Na Ion Batteries [J].
Babu, R. Suresh ;
Pyo, Myoungho .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (06) :A1045-A1050
[4]   Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements [J].
Bommier, Clement ;
Luo, Wei ;
Gao, Wen-Yang ;
Greaney, Alex ;
Ma, Shengqian ;
Ji, Xiulei .
CARBON, 2014, 76 :165-174
[5]   Li-insertion in hard carbon anode materials for Li-ion batteries. [J].
Buiel, E ;
Dahn, JR .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :121-130
[6]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[7]   Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode Part II. Disordered carbon [J].
Dokko, K ;
Fujita, Y ;
Mohamedi, M ;
Umeda, M ;
Uchida, I ;
Selman, JR .
ELECTROCHIMICA ACTA, 2001, 47 (06) :933-938
[8]   NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery [J].
Gotoh, Kazuma ;
Ishikawa, Toru ;
Shimadzu, Saori ;
Yabuuchi, Naoaki ;
Komaba, Shinichi ;
Takeda, Kazuyuki ;
Goto, Atsushi ;
Deguchi, Kenzo ;
Ohki, Shinobu ;
Hashi, Kenjiro ;
Shimizu, Tadashi ;
Ishida, Hiroyuki .
JOURNAL OF POWER SOURCES, 2013, 225 :137-140
[9]   Non-crystalline oligopyrene as a cathode material with a high-voltage plateau for sodium ion batteries [J].
Han, Su Cheol ;
Bae, Eun Gyoung ;
Lim, Heatsal ;
Pyo, Myoungho .
JOURNAL OF POWER SOURCES, 2014, 254 :73-79
[10]   SnO2 nanoparticles confined in a graphene framework for advanced anode materials [J].
Hwang, Yun-Hwa ;
Bae, Eun Gyoung ;
Sohn, Kee-Sun ;
Shim, Sangdeok ;
Song, Xiaokai ;
Lah, Myoung Soo ;
Pyo, Myoungho .
JOURNAL OF POWER SOURCES, 2013, 240 :683-690