Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids

被引:230
作者
Shirure, Venktesh S. [1 ]
Bi, Ye [2 ]
Curtis, Matthew B. [1 ]
Lezia, Andrew [3 ]
Goedegebuure, Madeleine M. [5 ]
Goedegebuure, S. Peter [2 ,4 ]
Aft, Rebecca [2 ,4 ,6 ]
Fields, Ryan C. [2 ,4 ]
George, Steven C. [1 ]
机构
[1] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA
[2] Washington Univ, Sch Med, Dept Surg, St Louis, MO 63110 USA
[3] Washington Univ, Dept Biomed Engn, St Louis, MO 63130 USA
[4] Washington Univ, Sch Med, Siteman Canc Ctr, St Louis, MO USA
[5] Washington Univ, Sch Engn & Appl Sci, St Louis, MO 63130 USA
[6] Johan Cochran Vet Adm Hosp, St Louis, MO 63110 USA
基金
美国国家卫生研究院;
关键词
INTERSTITIAL FLOW; CANCER; MODEL; ANGIOGENESIS; MICROVESSELS; METASTASIS; MICROSCOPY; GROWTH;
D O I
10.1039/c8lc00596f
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Most cancer treatment strategies target cell proliferation, angiogenesis, migration, and intravasation of tumor cells in an attempt to limit tumor growth and metastasis. An in vitro platform to assess tumor progression and drug sensitivity could provide avenues to enhance our understanding of tumor metastasis as well as precision medicine. We present a microfluidic platform that mimics biological mass transport near the arterial end of a capillary in the tumor microenvironment. A central feature is a quiescent perfused 3D microvascular network created prior to loading tumor cells or patient-derived tumor organoids in an adjacent compartment. The physiological delivery of nutrients and/or drugs to the tumor then occurs through the vascular network. We demonstrate the culture, growth, and treatment of tumor cell lines and patient-derived breast cancer organoids. The platform provides the opportunity to simultaneously and dynamically observe hallmark features of tumor progression including cell proliferation, angiogenesis, cell migration, and tumor cell intravasation. Additionally, primary breast tumor organoids are viable in the device for several weeks and induce robust sprouting angiogenesis. Finally, we demonstrate the feasibility of our platform for drug discovery and personalized medicine by analyzing the response to chemo- and anti-angiogenic therapy. Precision medicine-based cancer treatments can only be realized if individual tumors can be rapidly assessed for therapeutic sensitivity in a clinically relevant timeframe (less than or similar to 14 days). Our platform indicates that this goal can be achieved and provides compelling opportunities to advance precision medicine for cancer.
引用
收藏
页码:3687 / 3702
页数:16
相关论文
共 43 条
[21]   Reconstruction of functionally normal and malignant human breast tissues in mice [J].
Kuperwasser, C ;
Chavarria, T ;
Wu, M ;
Magrane, G ;
Gray, JW ;
Carey, L ;
Richardson, A ;
Weinberg, RA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (14) :4966-4971
[22]   A microfluidic platform for quantitative analysis of cancer angiogenesis and intravasation [J].
Lee, Hyunjae ;
Park, Woohyun ;
Ryu, Hyunryul ;
Jeon, Noo Li .
BIOMICROFLUIDICS, 2014, 8 (05)
[23]   A new model of patient tumor-derived breast cancer Xenografts for preclinical assays [J].
Marangoni, Elisabetta ;
Vincent-Salomon, Anne ;
Auger, Nathalie ;
Degeorges, Armelle ;
Assayag, Franck ;
de Cremoux, Patricia ;
De Plater, Ludmilla ;
Guyader, Charlotte ;
De Pinieux, Gonzague ;
Judde, Jean-Gabriel ;
Rebucci, Magali ;
Tran-Perennou, Carine ;
Sastre-Garau, Xavier ;
Sigal-Zafrani, Brigitte ;
Delattre, Olivier ;
Dieras, Veronique ;
Poupon, Marie-France .
CLINICAL CANCER RESEARCH, 2007, 13 (13) :3989-3998
[24]  
McCarty WJ, 2007, BIORHEOLOGY, V44, P303
[25]   In vivo vasculogenic potential of human blood-derived endothelial progenitor cells [J].
Melero-Martin, Juan M. ;
Khan, Zia A. ;
Picard, Arnaud ;
Wu, Xiao ;
Paruchuri, Sailaja ;
Bischoff, Joyce .
BLOOD, 2007, 109 (11) :4761-4768
[26]   Microfluidic co-culture system for cancer migratory analysis and anti-metastatic drugs screening [J].
Mi, Shengli ;
Du, Zhichang ;
Xu, Yuanyuan ;
Wu, Zhengjie ;
Qian, Xiang ;
Zhang, Min ;
Sun, Wei .
SCIENTIFIC REPORTS, 2016, 6
[27]  
Moya ML, 2013, TISSUE ENG PART C-ME, V19, P730, DOI [10.1089/ten.tec.2012.0430, 10.1089/ten.TEC.2012.0430]
[28]   Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro [J].
Nguyen, Duc-Huy T. ;
Stapleton, Sarah C. ;
Yang, Michael T. ;
Cha, Susie S. ;
Choi, Colin K. ;
Galie, Peter A. ;
Chen, Christopher S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (17) :6712-6717
[29]   A Microvascularized Tumor-mimetic Platform for Assessing Anti-cancer Drug Efficacy [J].
Pradhan, Shantanu ;
Smith, Ashley M. ;
Garson, Charles J. ;
Hassani, Iman ;
Seeto, Wen J. ;
Pant, Kapil ;
Arnold, Robert D. ;
Prabhakarpandian, Balabhaskar ;
Lipke, Elizabeth A. .
SCIENTIFIC REPORTS, 2018, 8
[30]  
RISAU W, 1988, DEVELOPMENT, V102, P471