Secure communications based on the synchronization of the hyperchaotic Chen and the unified chaotic systems

被引:85
作者
Smaoui, N. [1 ]
Karouma, A. [1 ]
Zribi, M. [2 ]
机构
[1] Kuwait Univ, Dept Math, Kuwait 13060, Kuwait
[2] Kuwait Univ, Dept Elect Engn, Kuwait 13060, Kuwait
关键词
Hyperchaotic Chen systems; Unified chaotic systems; Synchronization; Adaptive control; Secure communications; ADAPTIVE SYNCHRONIZATION; MODULATION; PARAMETER;
D O I
10.1016/j.cnsns.2010.10.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the adaptive synchronization of two identical hyperchaotic master and slave systems. The master system and the slave system each consists of two subsystems: a hyperchaotic Chen subsystem and a unified chaotic subsystem. The asymptotic convergence of the errors between the states of the master system and the states of the slave system is proven using Lyapunov theory. Simulation results are presented to illustrate the ability of the control law to synchronize the master and slave systems. Moreover, the proposed control scheme is applied to encrypt and decrypt discrete signals such as digital images where computer simulation results are provided to show that the proposed control law works well. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:3279 / 3293
页数:15
相关论文
共 23 条
[1]   Chaos synchronization of Lu dynamical system [J].
Agiza, HN .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 58 (1-2) :11-20
[2]   Estimation of unknown parameters and adaptive synchronization of hyperchaotic systems [J].
Austin, Francis ;
Sun, Wen ;
Lu, Xiaoqing .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (12) :4264-4272
[3]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[4]   CHAOS SHIFT KEYING - MODULATION AND DEMODULATION OF A CHAOTIC CARRIER USING SELF-SYNCHRONIZING CHUA CIRCUITS [J].
DEDIEU, H ;
KENNEDY, MP ;
HASLER, M .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1993, 40 (10) :634-642
[5]   Adaptive synchronization of a hyperchaotic system with uncertain parameter [J].
Elabbasy, E. M. ;
Agiza, H. N. ;
El-Dessoky, M. M. .
CHAOS SOLITONS & FRACTALS, 2006, 30 (05) :1133-1142
[6]   Synchronization of a unified chaotic system and the application in secure communication [J].
Lu, J ;
Wu, XQ ;
Lü, JH .
PHYSICS LETTERS A, 2002, 305 (06) :365-370
[7]   Bridge the gap between the Lorenz system and the Chen system [J].
Lü, JH ;
Chen, GR ;
Cheng, DZ ;
Celikovsky, S .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (12) :2917-2926
[8]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199
[9]  
Slotine J.-J., 1978, APPL NONLINEAR CONTR
[10]  
Slotine J. J. E., 1991, APPL NONLINEAR CONTR