Generation of narrow-bandwidth single photons using electromagnetically induced transparency in atomic ensembles

被引:15
|
作者
Walther, P. [1 ]
Eisaman, M. D.
Andre, A.
Massou, F.
Fleischhauer, M.
Zibrov, A. S.
Lukin, M. D.
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[3] Tech Univ Kaiserslautern, Fachbereich Phys, D-67663 Kaiserslautern, Germany
[4] PN Lebedev Phys Inst, Moscow 117924, Russia
关键词
quantum repeater; atomic ensemble; EIT; single-photon;
D O I
10.1142/S0219749907002773
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We review recent experiments [M. D. Eisaman et al., Nature 438 (2005) 837] demonstrating the generation of narrow-bandwidth single photons using a room-temperature ensemble of Rb-87 atoms. Our method involves creation of an atomic coherence via Raman scattering and projective measurement, followed by the coherent transfer of this atomic coherence onto a single photon using electromagnetically induced transparency (EIT). The single photons generated using this method are shown to have many properties necessary for quantum information protocols, such as narrow bandwidths, directional emission, and controllable pulse shapes. The narrow bandwidths of these single photons (similar to MHz), resulting from their matching to the EIT resonance(similar to MHz), allow them to be stored in narrow-bandwidth quantum memories. We demonstrate this by using dynamic EIT to store and retrieve the single photons in a second ensemble for storage times up to a few microseconds. We also describe recent improvements to the single-photon fedelity compared to the work by M. D. Eisaman in Nature 438 (2005) 837. These techniques may prove useful in quantum information applications such as quantum repeaters, linear-optics quantum computation, and daytime free-space quantum communication.
引用
收藏
页码:51 / 62
页数:12
相关论文
共 50 条
  • [31] Entangler via electromagnetically induced transparency with an atomic ensemble
    Xihua Yang
    Yuanyuan Zhou
    Min Xiao
    Scientific Reports, 3
  • [32] Bichromatic electromagnetically induced transparency in hot atomic vapors
    Yan, Hui
    Liao, Kai-Yu
    Li, Jian-Feng
    Du, Yan-Xiong
    Zhang, Zhi-Ming
    Zhu, Shi-Liang
    PHYSICAL REVIEW A, 2013, 87 (05):
  • [33] Width of the electromagnetically induced transparency resonance in atomic vapor
    Ye, CY
    Zibrov, AS
    PHYSICAL REVIEW A, 2002, 65 (02): : 5
  • [34] Observation of ultra-narrow electromagnetically induced transparency and slow light using purely electronic spins in a hot atomic vapor
    Goldfarb, F.
    Ghosh, J.
    David, M.
    Ruggiero, J.
    Chaneliere, T.
    Le Gouet, J. -L.
    Gilles, H.
    Ghosh, R.
    Bretenaker, F.
    EPL, 2008, 82 (05)
  • [35] A practical guide to electromagnetically induced transparency in atomic vapor
    Finkelstein, Ran
    Bali, Samir
    Firstenberg, Ofer
    Novikova, Irina
    NEW JOURNAL OF PHYSICS, 2023, 25 (03):
  • [36] Velocity selectiveresonances and electromagnetically induced transparency in atomic rubidium
    Chakrabarti, Shrabana
    Pradhan, Amitkiran
    Bandyopadhyay, Amitava
    Ray, Ayan
    Ray, Biswajit
    Bhattacharya, Dipankar
    Ghosh, Pradip N.
    INDIAN JOURNAL OF PHYSICS, 2006, 80 (05) : 487 - 489
  • [37] Entangler via electromagnetically induced transparency with an atomic ensemble
    Yang, Xihua
    Zhou, Yuanyuan
    Xiao, Min
    SCIENTIFIC REPORTS, 2013, 3
  • [38] Electromagnetically induced transparency in inhomogeneously broadened divacancy defect ensembles in SiC
    Zwier, Olger, V
    Bosma, Tom
    Gilardoni, Carmem M.
    Yang, Xu
    Onur, Alexander R.
    Ohshima, Takeshi
    Son, Nguyen T.
    van der Wal, Caspar H.
    JOURNAL OF APPLIED PHYSICS, 2022, 131 (09)
  • [39] Localization of atomic excitation beyond the diffraction limit using electromagnetically induced transparency
    Miles, J. A.
    Das, Diptaranjan
    Simmons, Z. J.
    Yavuz, D. D.
    PHYSICAL REVIEW A, 2015, 92 (03):
  • [40] Optimal atomic quantum sensing using electromagnetically-induced-transparency readout
    Meyer, David H.
    O'Brien, Christopher
    Fahey, Donald P.
    Cox, Kevin C.
    Kunz, Paul D.
    PHYSICAL REVIEW A, 2021, 104 (04)