On the trichotomy character of xn+1 = α+γxn-1/A+Bxn+xn-2

被引:21
作者
Chatterjee, E [1 ]
Grove, EA [1 ]
Kostrov, Y [1 ]
Ladas, G [1 ]
机构
[1] Univ Rhode Isl, Dept Math, Kingston, RI 02881 USA
关键词
boundedness; difference equation; global attractor; periodic solution; period-two trichotomy; trichotomy character;
D O I
10.1080/1023619031000146850
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the global stability, the periodic character, and the boundedness nature of the solutions of the difference equation x(n+1) alpha+gammax(n-1)/A+Bx(n)+x(n-2) n = 0,1,... where the parameters alpha, gamma, A, B and the initial conditions x(-2), x(-1), x(0) are non-negative real numbers. We show that the solutions of the equation exhibit a trichotomy character which depends upon whether gamma is less than A, equal to A, or greater than A.
引用
收藏
页码:1113 / 1128
页数:16
相关论文
共 11 条
[1]   On the recursive sequence xn+1=α+xn-1/xn [J].
Amleh, AM ;
Grove, EA ;
Ladas, G ;
Georgiou, DA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 233 (02) :790-798
[2]  
[Anonymous], 2001, COMMUN APPL NONLINEA
[3]  
[Anonymous], 2001, MATH SCI RES HOT LIN
[4]  
CAMOUZIS E, 2003, J DIFF EQN APPL
[5]   On the recursive sequence xn+1=A/xn+1/xn-2 [J].
Devault, R ;
Ladas, G ;
Schultz, SW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (11) :3257-3261
[6]   On the trichotomy character of Xn+1=(α+βXn+γXn-1)/A+Xn [J].
Gibbons, CH ;
Kulenovic, MRS ;
Ladas, G ;
Voulov, HD .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2002, 8 (01) :75-92
[7]  
GROVE EA, 2001, MATH SCI RES HOT LIN, V5, P25
[8]  
GROVE EA, 2002, MATH SCI RES J
[9]  
Karakostas G. L., 1993, Differential Equations and Dynamical Systems, V1, P289
[10]  
KULENOVIC M. R. S., 2001, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures