Perturbation analysis of trapped-particle dynamics in axisymmetric dipole geometry

被引:2
作者
Duthoit, F. -X. [1 ]
Brizard, A. J. [1 ]
Peysson, Y. [1 ]
Decker, J. [1 ]
机构
[1] CEA, IRFM, F-13108 St Paul Les Durance, France
关键词
HAMILTONIAN THEORY;
D O I
10.1063/1.3486554
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The bounce-action-angle coordinates (J,zeta) for charged particles trapped in an axisymmetric dipole magnetic field are constructed by perturbation analysis. First, the lowest-order bounce-action-angle coordinates (J(0), zeta(0)) are derived for deeply trapped particles in the harmonic-oscillator approximation. Next, the Lie-transform perturbation method is used to derive higher-order anharmonic action-angle corrections (J=J(0)+epsilon(t)J(1), zeta = zeta(0) + epsilon(t)zeta(1)), where the dimensionless parameter epsilon(t) (s(b)/r(e))(2) << 1 is defined as the ratio of the turning-point distance vertical bar s(b)vertical bar (measured from the equator) along a magnetic field line labeled by the equatorial distance r(e). Explicit expressions ( with anharmonic corrections) for the canonical parallel coordinates s(J,zeta) and p(parallel to)(J, zeta) are presented, which satisfy the canonical identity {s, p(parallel to)} 1. Lastly, analytical expressions for the bounce and drift frequencies (which include anharmonic corrections) yield excellent agreement with exact numerical results. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3486554]
引用
收藏
页数:9
相关论文
共 15 条
[1]  
Baumjohann W., 1996, BASIC SPACE PLASMA P, DOI DOI 10.1142/P015
[2]   Orbit-averaged guiding-center Fokker-Planck operator [J].
Brizard, A. J. ;
Decker, J. ;
Peysson, Y. ;
Duthoit, F. -X. .
PHYSICS OF PLASMAS, 2009, 16 (10)
[3]   Nonlinear bounce-gyrocenter Hamiltonian dynamics in general magnetic field geometry [J].
Brizard, AJ .
PHYSICS OF PLASMAS, 2000, 7 (08) :3238-3246
[4]   Hamiltonian theory of guiding-center motion [J].
Cary, John R. ;
Brizard, Alain J. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :693-738
[5]   LIE TRANSFORM PERTURBATION-THEORY FOR HAMILTONIAN-SYSTEMS [J].
CARY, JR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1981, 79 (02) :129-159
[6]  
Chan A. A., 1991, THESIS PRINCETON U
[7]   Production and study of high-beta plasma confined by a superconducting dipole magnet [J].
Garnier, D. T. ;
Hansen, A. ;
Mauel, M. E. ;
Ortiz, E. ;
Boxer, A. C. ;
Ellsworth, J. ;
Karim, I. ;
Kesner, J. ;
Mahar, S. ;
Roach, A. .
PHYSICS OF PLASMAS, 2006, 13 (05)
[8]   MIRROR AND AZIMUTHAL DRIFT FREQUENCIES FOR GEOMAGNETICALLY TRAPPED PARTICLES [J].
HAMLIN, DA ;
WATSON, KM ;
VIK, RC ;
KARPLUS, R .
JOURNAL OF GEOPHYSICAL RESEARCH, 1961, 66 (01) :1-+
[9]   HAMILTONIAN THEORY OF GUIDING CENTER BOUNCE MOTION [J].
LITTLEJOHN, RG .
PHYSICA SCRIPTA, 1982, T2 :119-125
[10]   HAMILTONIAN PERTURBATION-THEORY IN NON-CANONICAL COORDINATES [J].
LITTLEJOHN, RG .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (05) :742-747