Computational Generation of Virtual Concrete Mesostructures

被引:22
作者
Holla, Vijaya [1 ]
Vu, Giao [1 ]
Timothy, Jithender J. [1 ]
Diewald, Fabian [2 ]
Gehlen, Christoph [2 ]
Meschke, Guenther [1 ]
机构
[1] Ruhr Univ Bochum, Inst Struct Mech, Univ Str 150, D-44791 Bochum, Germany
[2] Tech Univ Munich, Ctr Bldg Mat, Franz Langinger Str 10, D-81245 Munich, Germany
关键词
concrete; mesoscale; modelling; virtual mesostructure; machine learning; NUMERICAL HOMOGENIZATION; SIMULATION; AGGREGATE; ALGORITHM; FRACTURE; MODEL; COMPOSITES; BEHAVIOR; PACKING;
D O I
10.3390/ma14143782
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Concrete is a heterogeneous material with a disordered material morphology that strongly governs the behaviour of the material. In this contribution, we present a computational tool called the Concrete Mesostructure Generator (CMG) for the generation of ultra-realistic virtual concrete morphologies for mesoscale and multiscale computational modelling and the simulation of concrete. Given an aggregate size distribution, realistic generic concrete aggregates are generated by a sequential reduction of a cuboid to generate a polyhedron with multiple faces. Thereafter, concave depressions are introduced in the polyhedron using Gaussian surfaces. The generated aggregates are assembled into the mesostructure using a hierarchic random sequential adsorption algorithm. The virtual mesostructures are first calibrated using laboratory measurements of aggregate distributions. The model is validated by comparing the elastic properties obtained from laboratory testing of concrete specimens with the elastic properties obtained using computational homogenisation of virtual concrete mesostructures. Finally, a 3D-convolutional neural network is trained to directly generate elastic properties from voxel data.
引用
收藏
页数:19
相关论文
共 44 条
[41]   Numerical investigation of effect of particle shape and particle size distribution on fresh cement paste microstructure via random sequential packing of dodecahedral cement particles [J].
Xu, W. X. ;
Chen, H. S. .
COMPUTERS & STRUCTURES, 2013, 114 :35-45
[42]   Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets [J].
Yang, Zijiang ;
Yabansu, Yuksel C. ;
Al-Bahrani, Reda ;
Liao, Wei-keng ;
Choudhary, Alok N. ;
Kalidindi, Surya R. ;
Agrawal, Ankit .
COMPUTATIONAL MATERIALS SCIENCE, 2018, 151 :278-287
[43]   A numerical algorithm for the ITZ area fraction in concrete with elliptical aggregate particles [J].
Zheng, J. J. ;
Xiong, F. F. ;
Wu, Z. M. ;
Jin, W. L. .
MAGAZINE OF CONCRETE RESEARCH, 2009, 61 (02) :109-117
[44]   Discrete particle simulation of particulate systems: A review of major applications and findings [J].
Zhu, H. P. ;
Zhou, Z. Y. ;
Yang, R. Y. ;
Yu, A. B. .
CHEMICAL ENGINEERING SCIENCE, 2008, 63 (23) :5728-5770