Computational Generation of Virtual Concrete Mesostructures

被引:22
作者
Holla, Vijaya [1 ]
Vu, Giao [1 ]
Timothy, Jithender J. [1 ]
Diewald, Fabian [2 ]
Gehlen, Christoph [2 ]
Meschke, Guenther [1 ]
机构
[1] Ruhr Univ Bochum, Inst Struct Mech, Univ Str 150, D-44791 Bochum, Germany
[2] Tech Univ Munich, Ctr Bldg Mat, Franz Langinger Str 10, D-81245 Munich, Germany
关键词
concrete; mesoscale; modelling; virtual mesostructure; machine learning; NUMERICAL HOMOGENIZATION; SIMULATION; AGGREGATE; ALGORITHM; FRACTURE; MODEL; COMPOSITES; BEHAVIOR; PACKING;
D O I
10.3390/ma14143782
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Concrete is a heterogeneous material with a disordered material morphology that strongly governs the behaviour of the material. In this contribution, we present a computational tool called the Concrete Mesostructure Generator (CMG) for the generation of ultra-realistic virtual concrete morphologies for mesoscale and multiscale computational modelling and the simulation of concrete. Given an aggregate size distribution, realistic generic concrete aggregates are generated by a sequential reduction of a cuboid to generate a polyhedron with multiple faces. Thereafter, concave depressions are introduced in the polyhedron using Gaussian surfaces. The generated aggregates are assembled into the mesostructure using a hierarchic random sequential adsorption algorithm. The virtual mesostructures are first calibrated using laboratory measurements of aggregate distributions. The model is validated by comparing the elastic properties obtained from laboratory testing of concrete specimens with the elastic properties obtained using computational homogenisation of virtual concrete mesostructures. Finally, a 3D-convolutional neural network is trained to directly generate elastic properties from voxel data.
引用
收藏
页数:19
相关论文
共 44 条
[1]  
Carrara P., 2016, RILEM TECH LETT, V1, P94, DOI DOI 10.21809/RILEMTECHLETT
[2]   DISCRETE NUMERICAL-MODEL FOR GRANULAR ASSEMBLIES [J].
CUNDALL, PA ;
STRACK, ODL .
GEOTECHNIQUE, 1979, 29 (01) :47-65
[3]   A linear programming algorithm to test for jamming in hard-sphere packings [J].
Donev, A ;
Torquato, S ;
Stillinger, FH ;
Connelly, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 197 (01) :139-166
[4]   Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method [J].
Duester, Alexander ;
Sehlhorst, Hans-Georg ;
Rank, Ernst .
COMPUTATIONAL MECHANICS, 2012, 50 (04) :413-431
[5]   Estimation of local stresses and elastic properties of a mortar sample by FFT computation of fields on a 3D image [J].
Escoda, J. ;
Willot, F. ;
Jeulin, D. ;
Sanahuja, J. ;
Toulemonde, C. .
CEMENT AND CONCRETE RESEARCH, 2011, 41 (05) :542-556
[6]   FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials [J].
Feyel, F ;
Chaboche, JL .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 183 (3-4) :309-330
[7]   Multiscale FE2 elastoviscoplastic analysis of composite structures [J].
Feyel, F .
COMPUTATIONAL MATERIALS SCIENCE, 1999, 16 (1-4) :344-354
[8]   Meso-scale analysis of FRC using a two-step homogenization approach [J].
Gal, Erez ;
Kryvoruk, Roman .
COMPUTERS & STRUCTURES, 2011, 89 (11-12) :921-929
[9]   COMPUTATIONAL MATERIALS SCIENCE OF CEMENT-BASED MATERIALS [J].
GARBOCZI, EJ .
MATERIALS AND STRUCTURES, 1993, 26 (158) :191-195
[10]   Cementitious Composites with High Compaction Potential: Modeling and Calibration [J].
Giao Vu ;
Iskhakov, Tagir ;
Timothy, Jithender J. ;
Schulte-Schrepping, Christoph ;
Breitenbuecher, Rolf ;
Meschke, Guenther .
MATERIALS, 2020, 13 (21) :1-17