Size quantization of Dirac fermions in graphene constrictions

被引:76
作者
Terres, B. [1 ,2 ,3 ]
Chizhova, L. A. [4 ]
Libisch, F. [4 ]
Peiro, J. [1 ,2 ]
Joerger, D. [1 ,2 ]
Engels, S. [1 ,2 ,3 ]
Girschik, A. [4 ]
Watanabe, K. [5 ]
Taniguchi, T. [5 ]
Rotkin, S. V. [1 ,2 ,6 ,7 ]
Burgdoerfer, J. [4 ,8 ]
Stampfer, C. [1 ,2 ,3 ]
机构
[1] Rhein Westfal TH Aachen, JARA FIT, D-52056 Aachen, Germany
[2] Rhein Westfal TH Aachen, Inst Phys 2, D-52056 Aachen, Germany
[3] Forschungszentrum Julich, Peter Grunberg Inst PGI 9, D-52425 Julich, Germany
[4] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria
[5] Natl Inst Mat Sci, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[6] Lehigh Univ, Dept Phys, Bldg 16, Bethlehem, PA 18015 USA
[7] Lehigh Univ, Ctr Adv Mat & Nanotechnol, Bethlehem, PA 18015 USA
[8] Hungarian Acad Sci ATOMKI, Inst Nucl Res, H-4001 Debrecen, Hungary
基金
奥地利科学基金会;
关键词
SUSPENDED GRAPHENE; QUANTUM; NANORIBBONS; CONDUCTANCE; TRANSPORT; EDGES; GAS;
D O I
10.1038/ncomms11528
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum point contacts are cornerstones of mesoscopic physics and central building blocks for quantum electronics. Although the Fermi wavelength in high-quality bulk graphene can be tuned up to hundreds of nanometres, the observation of quantum confinement of Dirac electrons in nanostructured graphene has proven surprisingly challenging. Here we show ballistic transport and quantized conductance of size-confined Dirac fermions in lithographically defined graphene constrictions. At high carrier densities, the observed conductance agrees excellently with the Landauer theory of ballistic transport without any adjustable parameter. Experimental data and simulations for the evolution of the conductance with magnetic field unambiguously confirm the identification of size quantization in the constriction. Close to the charge neutrality point, bias voltage spectroscopy reveals a renormalized Fermi velocity of similar to 1.5 x 10(6) ms(-1) in our constrictions. Moreover, at low carrier density transport measurements allow probing the density of localized states at edges, thus offering a unique handle on edge physics in graphene devices.
引用
收藏
页数:7
相关论文
共 39 条
[1]   Exceptional ballistic transport in epitaxial graphene nanoribbons [J].
Baringhaus, Jens ;
Ruan, Ming ;
Edler, Frederik ;
Tejeda, Antonio ;
Sicot, Muriel ;
Taleb-Ibrahimi, Amina ;
Li, An-Ping ;
Jiang, Zhigang ;
Conrad, Edward H. ;
Berger, Claire ;
Tegenkamp, Christoph ;
de Heer, Walt A. .
NATURE, 2014, 506 (7488) :349-354
[2]   Characterizing wave functions in graphene nanodevices: Electronic transport through ultrashort graphene constrictions on a boron nitride substrate [J].
Bischoff, D. ;
Libisch, F. ;
Burgdoerfer, J. ;
Ihn, T. ;
Ensslin, K. .
PHYSICAL REVIEW B, 2014, 90 (11)
[3]   Observation of the fractional quantum Hall effect in graphene [J].
Bolotin, Kirill I. ;
Ghahari, Fereshte ;
Shulman, Michael D. ;
Stormer, Horst L. ;
Kim, Philip .
NATURE, 2009, 462 (7270) :196-199
[4]   Ballistic versus diffusive transport in graphene [J].
Borunda, Mario F. ;
Hennig, H. ;
Heller, Eric J. .
PHYSICAL REVIEW B, 2013, 88 (12)
[5]   Shot noise in ballistic graphene [J].
Danneau, R. ;
Wu, F. ;
Craciun, M. F. ;
Russo, S. ;
Tomi, M. Y. ;
Salmilehto, J. ;
Morpurgo, A. F. ;
Hakonen, P. J. .
PHYSICAL REVIEW LETTERS, 2008, 100 (19)
[6]   Electronic transport in two-dimensional graphene [J].
Das Sarma, S. ;
Adam, Shaffique ;
Hwang, E. H. ;
Rossi, Enrico .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :407-470
[7]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[8]   Imaging charge density fluctuations in graphene using Coulomb blockade spectroscopy [J].
Deshpande, A. ;
Bao, W. ;
Zhao, Z. ;
Lau, C. N. ;
LeRoy, B. J. .
PHYSICAL REVIEW B, 2011, 83 (15)
[9]   Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene [J].
Du, Xu ;
Skachko, Ivan ;
Duerr, Fabian ;
Luican, Adina ;
Andrei, Eva Y. .
NATURE, 2009, 462 (7270) :192-195
[10]  
Elias DC, 2011, NAT PHYS, V7, P701, DOI [10.1038/NPHYS2049, 10.1038/nphys2049]