Asymptotic Behavior of Eigenvalues of a Boundary Value Problem for a Second-Order Elliptic Differential-Operator Equation with Spectral Parameter Quadratically Occurring in the Boundary Condition

被引:9
作者
Aliev, B. A. [1 ,2 ]
机构
[1] Natl Acad Sci Azerbaijan, Inst Math & Mech, AZ-1141 Baku, Azerbaijan
[2] Baku State Pedag Univ, AZ-1000 Baku, Azerbaijan
关键词
D O I
10.1134/S0012266118090124
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The asymptotic behavior of eigenvalues of a boundary value problem for a second-order differential-operator equation in a separable Hilbert space on a finite interval is studied for the case in which the same spectral parameter occurs linearly in the equation and quadratically in one of the boundary conditions. We prove that the problem has a sequence of eigenvalues converging to zero.
引用
收藏
页码:1256 / 1260
页数:5
相关论文
共 8 条
[1]  
Aliev B.A., 2014, P I MATH MECH NATL A
[2]  
Aliev B.A., 2006, UKR MATH J, V58, P1298, DOI DOI 10.1007/s11253-006-0134-1
[3]  
Aliev BA, 2015, RIV MAT UNIV PARMA, V6, P241
[4]  
Gorbachuk V.I., 1981, DIRECT INVERSE PROBL
[5]   On the uniform convergence in C 1 of Fourier series for a spectral problem with squared spectral parameter in a boundary condition [J].
Kapustin, N. Yu .
DIFFERENTIAL EQUATIONS, 2011, 47 (10) :1408-1413
[6]   On a spectral problem in the theory of the heat operator [J].
Kapustin, N. Yu. .
DIFFERENTIAL EQUATIONS, 2009, 45 (10) :1544-1546
[7]  
Rybak M.A., 1980, UKR MATH J, V32, P159, DOI DOI 10.1007/BF01092795
[8]  
Yakubov S.Ya., 1982, SOV MATH DOKL, V26, P276