Optimal designs for the emax, log-linear and exponential models

被引:40
作者
Dette, H. [1 ]
Kiss, C. [1 ]
Bevanda, M. [1 ]
Bretz, Frank [2 ]
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
[2] Novartis Pharma AG, Stat Methodol, CH-4002 Basel, Switzerland
关键词
c-optimality; D-optimality; Dose response; EDp-optimality; Tchebycheff system; MICHAELIS-MENTEN MODEL; REGRESSION-MODELS; POINTS;
D O I
10.1093/biomet/asq020
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We derive locally D- and EDp-optimal designs for the exponential, log-linear and three-parameter emax models. For each model the locally D- and EDp-optimal designs are supported at the same set of points, while the corresponding weights are different. This indicates that for a given model, D-optimal designs are efficient for estimating the smallest dose that achieves 100p% of the maximum effect in the observed dose range. Conversely, EDp-optimal designs also yield good D-efficiencies. We illustrate the results using several examples and demonstrate that locally D- and EDp-optimal designs for the emax, log-linear and exponential models are relatively robust with respect to misspecification of the model parameters.
引用
收藏
页码:513 / 518
页数:6
相关论文
共 14 条
[1]   Practical considerations for optimal designs in clinical dose finding studies [J].
Bretz, Frank ;
Dette, Holger ;
Pinheiro, Jose C. .
STATISTICS IN MEDICINE, 2010, 29 (7-8) :731-742
[2]   Robust and efficient designs for the Michaelis-Menten model [J].
Dette, H ;
Biedermann, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (463) :679-686
[3]   Bayesian D-optimal designs for exponential regression models [J].
Dette, H ;
Neugebauer, HM .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 60 (02) :331-349
[4]   Optimal Designs for Dose-Finding Studies [J].
Dette, Holger ;
Bretz, Frank ;
Pepelyshev, Andrey ;
Pinheiro, Jose .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (483) :1225-1237
[5]   OPTIMAL DESIGNS FOR DRUG, NEUROTRANSMITTER AND HORMONE RECEPTOR ASSAYS [J].
DUNN, G .
STATISTICS IN MEDICINE, 1988, 7 (07) :805-815
[6]   D- and c-optimal designs for exponential regression models used in viral dynamics and other applications [J].
Han, C ;
Chaloner, K .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 115 (02) :585-601
[7]  
Karlin S., 1966, TCHEBYCHEFF SYSTEMS
[8]   GENERAL EQUIVALENCE THEORY FOR OPTIMUM DESIGNS (APPROXIMATE THEORY) [J].
KIEFER, J .
ANNALS OF STATISTICS, 1974, 2 (05) :849-879
[9]  
Kiefer J., 1960, CAN J MATH, V12, P363, DOI [10.4153/CJM-1960-030-4, DOI 10.4153/CJM-1960-030-4]
[10]   Design issues for the Michaelis-Menten model [J].
López-Fidalgo, J ;
Wong, WK .
JOURNAL OF THEORETICAL BIOLOGY, 2002, 215 (01) :1-11