Numerical modelling study of a modified sandbag system for ballistic protection

被引:4
作者
Thawani, B. [1 ]
Hazael, R. [1 ]
Critchley, R. [1 ,2 ]
机构
[1] Cranfield Univ, Def Acad United Kingdom, Ctr Def Engn, Shrivenham SN6 8LA, England
[2] Univ West England, Engn Design & Math, Frenchay Campus,Coldharbour Lane, Bristol BS16 1QY, Avon, England
关键词
Compaction; Energy absorption; Sandbag; Simulation; Ballistic plate; PENETRATION; COMPACTION;
D O I
10.1016/j.jocs.2021.101403
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Modern field fortification systems are very large and cause a logistical burden during setup, thus setting the requirement for their modification. A simulation study was conducted to study the correlation between the compaction of sand and the energy absorbed by it when impacted by a solid steel projectile at 850 m/s. Furthermore, the sandbag was modified by the addition of plates in the system to observe the change in projectile penetration and the energy absorption behaviour of the sand. The factors considered for this study were the plate thickness (15 mm, 25 mm), plate material (aluminium, concrete, plexiglass, polycarbonate, steel) and plate location (226 mm, 236 mm, 256 mm from the point of impact). It was observed that a layer of compressed sand is formed around the projectile, aiding the energy absorption and dissipation process during impact. Upon addition of the plate, it was observed that the modified system (plate and sand) absorbed maximum energy when the plate is placed closest to the point of maximum penetration without the plate. It was also noted that the addition of the plate enhanced energy absorption characteristics of the system compared to conventional sandbags because of increased compaction of sand. From the study, it was observed that the plexiglass and polycarbonate plates had the maximum energy absorption and maximum deformation. The steel plate had the least energy absorption and minimal deformation. Concrete and Aluminium had comparable areal density, energy absorption and lowest deformation, making them the preferred choice of plate material for a modified sandbag. The numerical studies were verified using a gas gun and a modified sandbag with Aluminium plates to show that the addition of a plate improves compaction behaviour of sand.
引用
收藏
页数:12
相关论文
共 49 条
[1]   Heterogeneous lightweight configuration for protection against 7.62 x 39 mm bullet impact [J].
Ahmed, Khurshid ;
Malik, Abdul Qadeer ;
Ahmad, Iram Raza .
INTERNATIONAL JOURNAL OF PROTECTIVE STRUCTURES, 2019, 10 (03) :289-305
[2]  
Aly-Hassan M.S, 2015, NEW PERSPECTIVE MULT, DOI [10.1016/B978-0-323-26434-1.00002-7, DOI 10.1016/B978-0-323-26434-1.00002-7]
[3]  
Bangash M.Y. H., 1993, Impact and Explosion
[4]   A new process of forming metallic bipolar plates for PEM fuel cell with pin-type pattern [J].
Belali-Owsia, M. ;
Bakhshi-Jooybari, M. ;
Hosseinipour, S. J. ;
Gorji, A. H. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2015, 77 (5-8) :1281-1293
[5]   COMPUTATIONAL METHODS IN LAGRANGIAN AND EULERIAN HYDROCODES [J].
BENSON, DJ .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 99 (2-3) :235-394
[6]  
Bless SJ, 2009, AIP CONF PROC, V1195, P1361
[7]   In Situ Characterization Of Projectile Penetration Into Sand Targets [J].
Borg, John P. ;
Sable, Peter ;
Sandusky, Harold ;
Felts, Joshua .
SHOCK COMPRESSION OF CONDENSED MATTER - 2015, 2017, 1793
[8]   On the ballistic and blast load response of a 20ft ISO container protected with aluminium panels filled with a local mass - Phase II: Validation of protective system [J].
Borvik, T. ;
Burbach, A. ;
Langberg, H. ;
Langseth, M. .
ENGINEERING STRUCTURES, 2008, 30 (06) :1621-1631
[9]  
Brehm D, 2009, MIT NEWS
[10]  
Brown JL, 2007, AIP CONF PROC, V955, P1363, DOI 10.1063/1.2832977