Differentially Private Ensemble Classifiers for Data Streams

被引:0
|
作者
Gondara, Lovedeep [1 ]
Wang, Ke [1 ]
Carvalho, Ricardo Silva [1 ]
机构
[1] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC, Canada
来源
WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING | 2022年
基金
加拿大自然科学与工程研究理事会;
关键词
Differential privacy; data streams; ensembles; concept drift; NOISE;
D O I
10.1145/3488560.3498498
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning from continuous data streams via classification/regression is prevalent in many domains. Adapting to evolving data characteristics (concept drift) while protecting data owners' private information is an open challenge. We present a differentially private ensemble solution to this problem with two distinguishing features: it allows an unbounded number of ensemble updates to deal with the potentially never-ending data streams under a fixed privacy budget, and it is model agnostic, in that it treats any pre-trained differentially private classification/regression model as a black-box. Our method outperforms competitors on real-world and simulated datasets for varying settings of privacy, concept drift, and data distribution.
引用
收藏
页码:325 / 333
页数:9
相关论文
共 50 条
  • [21] Ensemble Clustering for Novelty Detection in Data Streams
    Garcia, Kemilly Dearo
    de Faria, Elaine Ribeiro
    de Sa, Claudio Rebelo
    Mendes-Moreira, Joao
    Aggarwal, Charu C.
    de Carvalho, Andre C. P. L. F.
    Kok, Joost N.
    DISCOVERY SCIENCE (DS 2019), 2019, 11828 : 460 - 470
  • [22] Differentially Private Real-Time Data Publishing over Infinite Trajectory Streams
    Cao, Yang
    Yoshikawa, Masatoshi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2016, E99D (01): : 163 - 175
  • [23] Droplet Ensemble Learning on Drifting Data Streams
    Loeffel, Pierre-Xavier
    Bifet, Albert
    Marsala, Christophe
    Detyniecki, Marcin
    ADVANCES IN INTELLIGENT DATA ANALYSIS XVI, IDA 2017, 2017, 10584 : 210 - 222
  • [24] A Differentially Private Scheme for Top-k Frequent Itemsets Mining Over Data Streams
    Liang W.-J.
    Chen H.
    Zhao S.-Y.
    Li C.-P.
    Jisuanji Xuebao/Chinese Journal of Computers, 2021, 44 (04): : 741 - 760
  • [25] Differential Privacy for Protecting Private Patterns in Data Streams
    Gu, He
    Plagemann, Thomas
    Benndorf, Maik
    Goebel, Vera
    Koldehofe, Boris
    2023 IEEE 39TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS, ICDEW, 2023, : 118 - 124
  • [26] Online Learning Model for Handling Different Concept Drifts Using Diverse Ensemble Classifiers on Evolving Data Streams
    Ancy, S.
    Paulraj, D.
    CYBERNETICS AND SYSTEMS, 2019, 50 (07) : 579 - 608
  • [27] Incremental Learning and Forgetting in One-Class Classifiers for Data Streams
    Krawczyk, Bartosz
    Wozniak, Michal
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON COMPUTER RECOGNITION SYSTEMS CORES 2013, 2013, 226 : 319 - 328
  • [28] Ensemble Diversity in Evolving Data Streams
    Brzezinski, Dariusz
    Stefanowski, Jerzy
    DISCOVERY SCIENCE, (DS 2016), 2016, 9956 : 229 - 244
  • [29] Differentially private frequent episode mining over event streams
    Qin, Jiawen
    Wang, Jinyan
    Li, Qiyu
    Fang, Shijian
    Li, Xianxian
    Lei, Lei
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 110
  • [30] Comparative Study of Differentially Private Data Synthesis Methods
    Bowen, Claire McKay
    Liu, Fang
    STATISTICAL SCIENCE, 2020, 35 (02) : 280 - 307