Phase Change Memory

被引:1423
|
作者
Wong, H. -S. Philip [1 ]
Raoux, Simone [2 ]
Kim, SangBum [1 ]
Liang, Jiale [1 ]
Reifenberg, John P. [3 ]
Rajendran, Bipin [2 ]
Asheghi, Mehdi [4 ]
Goodson, Kenneth E. [4 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[3] Intel Corp, Santa Clara, CA 95054 USA
[4] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Chalcogenides; emerging memory; heat conduction; nonvolatile memory; PCRAM; phase change material; phase change memory (PCM); PRAM; thermal physics; RANDOM-ACCESS MEMORY; INTRINSIC DATA RETENTION; COMPACT THERMAL-MODEL; MULTILEVEL STORAGE; CELL OPTIMIZATION; READ PERFORMANCE; HIGH-SPEED; PART II; CRYSTALLIZATION; RESISTANCE;
D O I
10.1109/JPROC.2010.2070050
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, recent progress of phase change memory (PCM) is reviewed. The electrical and thermal properties of phase change materials are surveyed with a focus on the scalability of the materials and their impact on device design. Innovations in the device structure, memory cell selector, and strategies for achieving multibit operation and 3-D, multilayer high-density memory arrays are described. The scaling properties of PCM are illustrated with recent experimental results using special device test structures and novel material synthesis. Factors affecting the reliability of PCM are discussed.
引用
收藏
页码:2201 / 2227
页数:27
相关论文
共 50 条
  • [41] Recrystallization process controlled by staircase pulse in phase change memory
    Yin, You
    Kobayashi, Ryota
    Hosaka, Sumio
    MICROELECTRONIC ENGINEERING, 2014, 113 : 61 - 65
  • [42] Reliability Impact of Chalcogenide-Structure Relaxation in Phase-Change Memory (PCM) Cells-Part II: Physics-Based Modeling
    Lavizzari, Simone
    Ielmini, Daniele
    Sharma, Deepak
    Lacaita, Andrea L.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2009, 56 (05) : 1078 - 1085
  • [43] Nanoscale phase change memory materials
    Caldwell, Marissa A.
    Jeyasingh, Rakesh Gnana David
    Wong, H-S Philip
    Milliron, Delia J.
    NANOSCALE, 2012, 4 (15) : 4382 - 4392
  • [44] SPCM: The Striped Phase Change Memory
    Hoseinzadeh, Morteza
    Arjomand, Mohammad
    Sarbazi-Azad, Hamid
    ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2016, 12 (04)
  • [45] Interfacial phase-change memory
    Simpson, R. E.
    Fons, P.
    Kolobov, A. V.
    Fukaya, T.
    Krbal, M.
    Yagi, T.
    Tominaga, J.
    NATURE NANOTECHNOLOGY, 2011, 6 (08) : 501 - 505
  • [46] Phase Change Memory and Breakthrough Technologies
    Ohta, Takeo
    IEEE TRANSACTIONS ON MAGNETICS, 2011, 47 (03) : 613 - 619
  • [47] A novel self-adaptive wordline voltage generator for high operational reliability in phase change memory
    Ding, Yiqing
    Liu, Xin
    Hong, Yang
    Lin, Yinyin
    Tang, Ting-ao
    Chen, Bomy
    INTEGRATED FERROELECTRICS, 2007, 90 : 72 - +
  • [48] Odd/Even Invert coding for phase change memory with thermal crosstalk
    Ahmad, Imtiaz
    Hamouda, Areej
    Alfailakawi, Mohammad Gh.
    MICROPROCESSORS AND MICROSYSTEMS, 2017, 49 : 150 - 163
  • [49] Multilevel-Cell Phase-Change Memory: A Viable Technology
    Athmanathan, Aravinthan
    Stanisavljevic, Milos
    Papandreou, Nikolaos
    Pozidis, Haralampos
    Eleftheriou, Evangelos
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2016, 6 (01) : 87 - 100
  • [50] Non-volatile phase change memory and its fabrication technology
    Balashov, Alexander G.
    Balan, Nikita N.
    Kalinin, Alexander V.
    EDM 2007: 8TH INTERNATIONAL WORKSHOP AND TUTORIALS ON ELECTRON DEVICES AND MATERIALS, 2007, : 121 - +