Phase Change Memory

被引:1460
作者
Wong, H. -S. Philip [1 ]
Raoux, Simone [2 ]
Kim, SangBum [1 ]
Liang, Jiale [1 ]
Reifenberg, John P. [3 ]
Rajendran, Bipin [2 ]
Asheghi, Mehdi [4 ]
Goodson, Kenneth E. [4 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[3] Intel Corp, Santa Clara, CA 95054 USA
[4] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Chalcogenides; emerging memory; heat conduction; nonvolatile memory; PCRAM; phase change material; phase change memory (PCM); PRAM; thermal physics; RANDOM-ACCESS MEMORY; INTRINSIC DATA RETENTION; COMPACT THERMAL-MODEL; MULTILEVEL STORAGE; CELL OPTIMIZATION; READ PERFORMANCE; HIGH-SPEED; PART II; CRYSTALLIZATION; RESISTANCE;
D O I
10.1109/JPROC.2010.2070050
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, recent progress of phase change memory (PCM) is reviewed. The electrical and thermal properties of phase change materials are surveyed with a focus on the scalability of the materials and their impact on device design. Innovations in the device structure, memory cell selector, and strategies for achieving multibit operation and 3-D, multilayer high-density memory arrays are described. The scaling properties of PCM are illustrated with recent experimental results using special device test structures and novel material synthesis. Factors affecting the reliability of PCM are discussed.
引用
收藏
页码:2201 / 2227
页数:27
相关论文
共 145 条
[131]   Fast phase transitions induced by picosecond electrical pulses on phase change memory cells [J].
Wang, W. J. ;
Shi, L. P. ;
Zhao, R. ;
Lim, K. G. ;
Lee, H. K. ;
Chong, T. C. ;
Wu, Y. H. .
APPLIED PHYSICS LETTERS, 2008, 93 (04)
[132]   Compact thermal model for phase change memory nanodevices [J].
Warren, R. ;
Reifenberg, J. ;
Goodson, K. .
2008 11TH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS, VOLS 1-3, 2008, :1018-1045
[133]   Selective Device Structure Scaling and Parasitics Engineering: A Way to Extend the Technology Roadmap [J].
Wei, Lan ;
Deng, Jie ;
Chang, Li-Wen ;
Kim, Keunwoo ;
Chuang, Ching-Te ;
Wong, H. -S. Philip .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2009, 56 (02) :312-320
[134]   Thickness dependent nano-crystallization in Ge2Sb2Te5 films and its effect on devices [J].
Wei Xiaoqian ;
Shi Luping ;
Chong Tow Chong ;
Zhao Rong ;
Lee, Hock Koon .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (4B) :2211-2214
[135]   Lower current operation of phase change memory cell with a thin TiO2 layer [J].
Xu, Cheng ;
Song, Zhitang ;
Liu, Bo ;
Feng, Songlin ;
Chen, Bomy .
APPLIED PHYSICS LETTERS, 2008, 92 (06)
[136]   HIGH-SPEED OVERWRITABLE PHASE-CHANGE OPTICAL DISK MATERIAL [J].
YAMADA, N ;
OHNO, E ;
AKAHIRA, N ;
NISHIUCHI, K ;
NAGATA, K ;
TAKAO, M .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1987, 26 :61-66
[137]  
YAMADA N, 2009, P EUR PHAS CHANG OV, P23
[138]   Ge2Sb2Te5 confined structures and integration of 64Mb phase-change random access memory [J].
Yeung, F ;
Ahn, SJ ;
Hwang, YN ;
Jeong, CW ;
Song, YJ ;
Lee, SY ;
Lee, SH ;
Ryoo, KC ;
Park, JH ;
Shin, JM ;
Jeong, WC ;
Kim, YT ;
Koh, GH ;
Jeong, GT ;
Jeong, HS ;
Kim, K .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2005, 44 (4B) :2691-2695
[139]   Multilevel storage in lateral top-heater phase-change memory [J].
Yin, You ;
Ota, Kazuhiro ;
Higano, Naoya ;
Sone, Hayato ;
Hosaka, Sumio .
IEEE ELECTRON DEVICE LETTERS, 2008, 29 (08) :876-878
[140]   Chalcogenide-nanowire-based phase change memory [J].
Yu, Bin ;
Sun, Xuhui ;
Ju, Sanghyun ;
Janes, David B. ;
Meyyappan, M. .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2008, 7 (04) :496-502