Model-Based Thermodynamic Analysis of a Hydrogen-Fired Gas Turbine With External Exhaust Gas Recirculation

被引:16
作者
Bexten, Thomas [1 ]
Joerg, Sophia [1 ]
Petersen, Nils [1 ]
Wirsum, Manfred [1 ]
Liu, Pei [2 ]
Li, Zheng [2 ]
机构
[1] Rhein Westfal TH Aachen, Inst Power Plant Technol Steam & Gas Turbines, Fac Mech Engn, D-52062 Aachen, Germany
[2] Tsinghua Univ, State Key Lab Power Syst, Tsinghua BP Clean Energy Res & Educ Ctr, Dept Energy & Power Engn, Beijing 100084, Peoples R China
来源
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME | 2021年 / 143卷 / 08期
关键词
CYCLE;
D O I
10.1115/1.4049699
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Climate science shows that the limitation of global warming requires a rapid transition toward net-zero emissions of green house gases on a global scale. Expanding renewable power generation in a significant way is seen as an imperative measure within this transition. To compensate for the inherent volatility of wind- and solar-based power generation, flexible and dispatchable power generation technologies such as gas turbines are required. If operated with CO2-neutral fuels such as hydrogen or in combination with carbon capture plants, a green house gases-neutral gas turbine operation can be achieved. An effective leverage to enhance carbon capture efficiency and a possible measure to safely burn hydrogen in gas turbines is the partial external recirculation of exhaust gas. By means of a model-based analysis of a state-of-the-art industrial gas turbine, this study initially assesses the thermodynamic impact caused by a fuel switch from natural gas to hydrogen. Although positive trends such as increasing net electrical power output and thermal efficiency can be observed, the overall effect on the gas turbine process is only minor. In a following step, the partial external recirculation of exhaust gas is evaluated and compared both for the combustion of natural gas and hydrogen, regardless of potential combustor design challenges. The influence of altering working fluid properties throughout the whole gas turbine process is thermodynamically evaluated for ambient temperature recirculation and recirculation at an elevated temperature (303.15 K). A reduction in thermal efficiency as well as non-negligible changes in relevant process variables can be observed. These changes are more distinctive at a higher recirculation temperature.
引用
收藏
页数:9
相关论文
共 23 条
  • [1] [Anonymous], 1999, CAN SOC CHEM ENG ANN
  • [2] Bexten Thomas, 2018, P ASME TURB EXP 2018, V6, DOI [10.1115/GT2018- 76630, DOI 10.1115/GT2018-76630]
  • [3] Comparison of two CO2 removal options in combined cycle power plants
    Bolland, O
    Mathieu, P
    [J]. ENERGY CONVERSION AND MANAGEMENT, 1998, 39 (16-18) : 1653 - 1663
  • [4] NEW CONCEPTS FOR NATURAL-GAS FIRED POWER-PLANTS WHICH SIMPLIFY THE RECOVERY OF CARBON-DIOXIDE
    BOLLAND, O
    SAETHER, S
    [J]. ENERGY CONVERSION AND MANAGEMENT, 1992, 33 (5-8) : 467 - 475
  • [5] Bothien M., 2019, ASME, DOI [10.1115/GT2019-90798, DOI 10.1115/GT2019-90798]
  • [6] Using hydrogen as gas turbine fuel
    Chiesa, P
    Lozza, G
    Mazzocchi, L
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2005, 127 (01): : 73 - 80
  • [7] Concept of hydrogen fired gas turbine cycle with exhaust gas recirculation: Assessment of combustion and emissions performance
    Ditaranto, Mario
    Li, Hailong
    Lovas, Terese
    [J]. INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2015, 37 : 377 - 383
  • [8] Application of Exhaust Gas Recirculation in a DLN F-Class Combustion System for Postcombustion Carbon Capture
    ElKady, Ahmed M.
    Evulet, Andrei
    Brand, Anthony
    Ursin, Tord Peter
    Lynghjem, Arne
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2009, 131 (03):
  • [9] On the Performance and Operability of GE's Dry Low NOx Combustors utilizing Exhaust Gas Recirculation for Post-Combustion Carbon Capture
    Evulet, Andrei T.
    ELKady, Ahmed M.
    Brand, Anthony R.
    Chinn, Daniel
    [J]. GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 3809 - 3816
  • [10] Using Hydrogen as Gas Turbine Fuel: Premixed Versus Diffusive Flame Combustors
    Gazzani, Matteo
    Chiesa, Paolo
    Martelli, Emanuele
    Sigali, Stefano
    Brunetti, Iarno
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2014, 136 (05):