based on a multi-depth output network

被引:3
作者
Sang, Qingbing [1 ,2 ]
Su, Chenfei [1 ,2 ]
Zhu, Lingying [1 ,2 ]
Liu, Lixiong [3 ]
Wu, Xiaojun [1 ,2 ]
Bovik, Alan C. [4 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi, Jiangsu, Peoples R China
[2] Jiangsu Prov Engn Lab Pattern Recognit & Computat, Wuxi, Jiangsu, Peoples R China
[3] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing, Peoples R China
[4] Univ Texas Austin, Lab Image & Video Engn, Austin, TX 78712 USA
基金
中国国家自然科学基金;
关键词
no-reference; image quality assessment; multi-depth output convolutional neural network; ensemble learning; IMAGE QUALITY ASSESSMENT; NATURAL SCENE STATISTICS;
D O I
10.1117/1.JEI.30.4.043007
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
When deep convolutional neural networks perform feature extraction, the features computed at each layer express different abstractions of visual information. The earlier layers extract highly compact low-level features such as bandpass and directional primitives, whereas deeper layers extract structural features of increasing abstraction, similar to contours, shapes, and edges, becoming less effable as the depth increases. We propose a different kind of end-to-end no-reference (NR) image quality assessment (IQA) model, which is defined as a multi-depth output convolutional neural network (MoNET). It accomplishes this by mapping both shallow and deep features to perceived quality. MoNET delivers three outputs that express shallow (lower-level) and deep (high-level) features, and maps them to subjective quality scores. The multiple outputs are combined into a single, final quality score. MoNET does this by combining the responses of three learning machines, so it may be viewed as a form of ensemble learning. The experimental results on three public image quality databases show that our proposed model achieves better performance than other state-of-the-art NR IQA algorithms. (c) 2021 SPIE and IS&T [DOI: 10.1117/1.JEI.30.4.043007]
引用
收藏
页数:17
相关论文
共 32 条
  • [1] [Anonymous], 2020, IEEE T CIRC SYST VID, DOI DOI 10.1109/TCSVT.2018.2886771
  • [2] Learning Mid-Level Features For Recognition
    Boureau, Y-Lan
    Bach, Francis
    LeCun, Yann
    Ponce, Jean
    [J]. 2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 2559 - 2566
  • [3] A Pre-Saliency Map Based Blind Image Quality Assessment via Convolutional Neural Networks
    Cheng, Zhengxue
    Takeuchi, Masaru
    Katto, Jiro
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2017, : 77 - 82
  • [4] Perceptual quality prediction on authentically distorted images using a bag of features approach
    Ghadiyaram, Deepti
    Bovik, Alan C.
    [J]. JOURNAL OF VISION, 2017, 17 (01):
  • [5] Massive Online Crowdsourced Study of Subjective and Objective Picture Quality
    Ghadiyaram, Deepti
    Bovik, Alan C.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (01) : 372 - 387
  • [6] Hinton G. E., 2012, ARXIV12070580
  • [7] Hore Alain, 2010, Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR 2010), P2366, DOI 10.1109/ICPR.2010.579
  • [8] Blind Image Quality Assessment via Deep Learning
    Hou, Weilong
    Gao, Xinbo
    Tao, Dacheng
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (06) : 1275 - 1286
  • [9] Jayaraman D, 2012, CONF REC ASILOMAR C, P1693, DOI 10.1109/ACSSC.2012.6489321
  • [10] Convolutional Neural Networks for No-Reference Image Quality Assessment
    Kang, Le
    Ye, Peng
    Li, Yi
    Doermann, David
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1733 - 1740