Self-Powered Intelligent Buoy Based on Triboelectric Nanogenerator for Water Level Alarming

被引:43
|
作者
Liang, Xi [1 ,2 ]
Liu, Shijie [1 ,2 ]
Ren, Zewei [3 ]
Jiang, Tao [1 ,2 ]
Wang, Zhong Lin [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Beijing Key Lab Micronano Energy & Sensor, Beijing Inst Nanoenergy & Nanosyst, CAS Ctr Excellence Nanosci, Beijing 101400, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
[3] Xidian Univ, Acad Adv Interdisciplinary Res, Sch Adv Mat & Nanotechnol, Xian 710126, Peoples R China
[4] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金;
关键词
charge excitation modules; self-powered systems; triboelectric nanogenerators; water hazard alarming; water wave energy harvesting; FLOOD;
D O I
10.1002/adfm.202205313
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With increasing global warming, catastrophic floods have threatened people's lives seriously and caused huge economic losses. However, present water hazard alarming systems generally rely on commercial batteries, limiting the intelligent development of disaster prevention planning and maintenance costs. In order to break the limitation, this work applies triboelectric nanogenerators (TENGs) to water hazard alarming. A spherical TENG device with four spiral units is designed to harvest water wave energy, and charge excitation modules (CEMs) are created and integrated with the TENG to improve its electric output. The output current and output power of the spherical TENG with CEMs can reach 15.09 mA and 24.48 mW, which are increased by 250.5 and 4.0 times, compared to the TENG without CEMs. Based on the charge excitation TENG, a self-powered intelligent buoy is constructed. Utilizing the buoy to transmit 433 MHz radio frequency signals to 25 meters away, a water level alarm system and a water level information exchange system with a mobile phone are successfully realized. This work extends applications of TENGs toward water wave energy harvesting and provides a new strategy for water hazard alarming, which is conducive to the fields of carbon neutralization, Internet of Things, and disaster prevention.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Self-powered intelligent pulse sensor based on triboelectric nanogenerators with AI assistance
    Tian, Yifei
    Hu, Cong
    Peng, Deguang
    Zhu, Zhiyuan
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [22] Polyvinyl alcohol-based economical triboelectric nanogenerator for self-powered energy harvesting applications
    Amini, Sebghatullah
    Ahmed, Rumana Farheen Sagade Muktar
    Ankanathappa, Sangamesha Madanahalli
    Sannathammegowda, Krishnaveni
    NANOTECHNOLOGY, 2024, 35 (03)
  • [23] All-Nanofiber-Based Ultralight Stretchable Triboelectric Nanogenerator for Self-Powered Wearable Electronics
    Zhao, Shuyu
    Wang, Jiaona
    Du, Xinyu
    Wang, Jing
    Cao, Ran
    Yin, Yingying
    Zhang, Xiuling
    Yuan, Zuqing
    Xing, Yi
    Pui, David Y. H.
    Li, Congju
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (05): : 2326 - 2332
  • [24] Self-Powered Position Monitoring System Based on Insole-Type Wearable Triboelectric Nanogenerator and Bluetooth Beacon
    Wang, Zheng
    Liu, Guoxu
    Cao, Jie
    Fu, Xianpeng
    Fan, Beibei
    Qin, Yuhan
    Wang, Zhaozheng
    Zhang, Zhi
    Chen, Yuanfen
    Zhang, Chi
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (18):
  • [25] A Self-Powered Smart Roller-Bearing Based on a Triboelectric Nanogenerator for Measurement of Rotation Movement
    Choi, Daehwan
    Sung, Taehoon
    Kwon, Jang-Yeon
    ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (12):
  • [26] A Self-Powered, Skin Adhesive, and Flexible Human-Machine Interface Based on Triboelectric Nanogenerator
    Wu, Xujie
    Yang, Ziyi
    Dong, Yu
    Teng, Lijing
    Li, Dan
    Han, Hang
    Zhu, Simian
    Sun, Xiaomin
    Zeng, Zhu
    Zeng, Xiangyu
    Zheng, Qiang
    NANOMATERIALS, 2024, 14 (16)
  • [27] Investigation of a self-powered biosensor using a brush-based triboelectric nanogenerator and an enzymatic reaction
    Komatsu, Tomohiro
    Uejima, Rino
    Sakamoto, Hiroaki
    BIOELECTROCHEMISTRY, 2025, 163
  • [28] Natural wood-based triboelectric nanogenerator as self-powered sensing for smart homes and floors
    Hao, Saifei
    Jiao, Jingyi
    Chen, Yandong
    Wang, Zhong Lin
    Cao, Xia
    NANO ENERGY, 2020, 75
  • [29] Self-powered bionic antenna based on triboelectric nanogenerator for micro-robotic tactile sensing
    Zhu, Dekuan
    Lu, Jiangfeng
    Zheng, Mingjie
    Wang, Dongkai
    Wang, Jianyu
    Liu, Yixin
    Wang, Xiaohao
    Zhang, Min
    NANO ENERGY, 2023, 114
  • [30] Stretchable Woven Fabric-Based Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
    Chen, Lijun
    Wang, Tairan
    Shen, Yunchu
    Wang, Fumei
    Chen, Chaoyu
    NANOMATERIALS, 2023, 13 (05)